All sounds are produced by the vibration of matter. If there is no vibration, there is no sound.

Slides:



Advertisements
Similar presentations
CP Physics Ms. Morrison.  Mechanical – needs medium  Longitudinal  Created by vibrations which disturb the medium and transmit the wave energy  Sound.
Advertisements

Properties of Sound EQ: How does intensity, loudness, frequency and pitch affect sound waves?
Chapter 14 Sound.
Sound. Sound Waves  Sound waves are longitudinal waves.  The source of a sound wave is a vibrating object.  Only certain wavelengths of longitudinal.
Introduction to Sound Unit 13, Presentation 1. Producing a Sound Wave  Sound waves are longitudinal waves traveling through a medium  A tuning fork.
Sound Chapter 15.
By Aimee Chavez. Wave: a disturbance that transfers energy from place to place. The material through which a wave travels through is called a medium.
Sound.
Sound. Sound waves are longitudinal pressure waves.
SOUND A vibrating object, such as your voice box, stereo speakers, guitar strings, etc., creates longitudinal waves in the medium around it. When these.
Vibrations, Waves, & Sound
Sound Notes.
SOUND Tiffany Rhodes Physics. Topics Covered Source Wave Medium Frequency Amplitude Speed Mach Number.
James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Waves and Sound Chapter 6.
Daily Challenge, 10/26 WHAT IS SOUND? Earlier, we saw how waves on a Slinky can cancel each other, add together to make one big wave, pass through each.
Chapter Review. Ch. 11 page , 4, 7, 8, 12, 14, 16, 19, 21, 23-25, 31, 32, 35, 37, 41, Oscillation about an equilibrium position in.
Chapter 13 - Sound 13.1 Sound Waves.
Unit 10: Sound.
Sound. Speed of sound in solids, liquids, and gases Speed of sound in gas (air): 344 m/sec. Speed of sound in liquid (water): 1100 m/sec Speed of sound.
Question 1 The distance from equilibrium of a wave to the crest of the wave is called…
Making Sound a longitudinal wave produced when matter vibrates – this in turn, causes the medium in which it is in to vibrate ex: tuning fork (the matter)
SOUND Longitudinal Wave Travels through some medium Cannot travel through a vacuum How does vibrating drum produce sound? Skin moving up presses air.
Properties of Sound Physical Science Ms. Pollock
1© Manhattan Press (H.K.) Ltd Radar speed trap.
 1) Determine the wave speed of a wave that has a period of 3 minutes and a wavelength of 0.05 m.  2) How are electromagnetic and mechanical waves different?
Sound
Sound Physics. Sound Source All sounds are produced by the vibrations of material objects The frequency of sounds is often described by the word pitch.
Sound Sound waves are –Longitudinal –Pressure Waves Infrasonic – less than 20 Hz Audible – between 20 and 20,000 Hz Ultrasonic – greater than 20,000 Hz.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Chapter 12.
Sound!. How are they made? Sound waves are made by vibrations. (simple harmonic motion) Sound waves are made by vibrations. (simple harmonic motion) These.
Sources of Sound  sound is a mechanical wave produced by vibrations that occur in a medium-- generally air  sound is a longitudinal wave.
Sound Waves Chapter 13. General Characteristics Longitudinal wave; requires elastic medium for propagation Series of compressions and rarefactions in.
CHAPTER 12: SOUND Sound is a longitudinal wave. Sound comes from a source, travels in a medium, as longitudinal waves, and is sensed by our ear.
Chapter 21 - The Nature of Sound. Sound is produced by ________________ which are the complete _____________________ motion of an object Sound travels.
SPH3U: Waves & Sound Wave Speed & Sound. The Universal Wave Equation Recall that the frequency of a wave is the number of complete cycles that pass a.
Sound Waves Sound A form of energy that causes molecules of a medium to vibrate back and forth in a series of compressions and rarefactions as a longitudinal.
Honors Physics Chapter 14
Ms. Barlow’s 8th Grade Physical Science Class
Chapter 12 Preview Objectives The Production of Sound Waves
Bell Ringer What causes sound?. Bell Ringer Explain one station from yesterday. How did length affect pitch? How did sound travel through different materials?
Properties Of Sound Sound waves are produced as longitudinal waves by compressions and rarefactions in matter. The medium for sound waves can be solid,
Chapter 18 Oscillation, Wave and Sound. Oscillation equation Pendulum Wave equation.
Physics Mrs. Dimler SOUND.  Every sound wave begins with a vibrating object, such as the vibrating prong of a tuning fork. Tuning fork and air molecules.
Sound Waves  Sound is a longitudinal wave, meaning that the motion of particles is along the direction of propagation.  sound waves are divided into.
Vibrations through a medium Sound. oAll sounds are produced by the vibrations of material objects. PITCH = The impression about the frequency of a sound.
What is sound? Sound is a longitudinal wave which travels through the air through a series of compressions and rarefactions.
Characteristics of waves.. The Nature of Waves What is a wave? A wave is a repeating disturbance or movement that transfers energy through matter or space.
Sound. Characteristics Loudness --> Amplitude Pitch -->frequency.
Sound Sound Waves  Longitudinal Waves (disturbance) that travel through a medium  Begins with a vibration  Carries ENERGY (like all waves)  Can travel.
Sound.
SOUND.
Sound.
Sound.
Sound.
Chapter 26: Sound.
Conceptual Physics Notes on Chapter 26 Sound.
Sound Waves.
Sound.
Waves & Sound A. Waves 1. The nature of waves
Sound and Hearing it.
Chapter 14 Sound.
Chapter 12 Sound.
Vibrations through a medium
Sound and HOW WE Hear it.
Sound Chapter 15.
Sound.
Sound.
All sounds are produced by the vibration of matter
Sound.
Sound and Hearing it.
Presentation transcript:

All sounds are produced by the vibration of matter. If there is no vibration, there is no sound.

Sonic spectrum - frequency range over which longitudinal waves occur.

A wave is not transported by a medium in which the wavelength is small compared to the inter- particle spacing of the medium.

Sound - range of compression-wave frequencies to which the human ear is sensitive.

This audio spectrum extends from approximately 20 to 20,000 hertz.

Frequencies above the audio range are ultrasonic. Frequencies below are infrasonic.

Sound waves are longitudinal waves. (Compressions and rarefactions.)

To produce sound waves, there must be a source of mechanical disturbance and an elastic medium.

Sound does not travel through a vacuum. (In space no one can hear you scream)

The speed of sound in air at 0° C is m/s. This speed increases with temp. about (0.6 m/s)/C°.

Speed of sound in water is about four times that in air. It is even faster in some solids.

Factors that affect sound speed: 1) temperature, 2) density, 3) elasticity.

The Doppler Effect is the apparent change in frequency of a wave due to the relative motion of the source and the listener.

If the two are approaching one another (due to the motion of either or both), there is a shift to a higher frequency.

If the two are moving away from one another, the listener receives a frequency lower than that produced by the source.

This apparent shift of frequency is demonstrated by all types of waves, not just by sound.

Three physical properties of sound: intensity, frequency, and harmonic content.

The effects of these on the ear are : loudness, pitch, and quality.

The intensity of a sound is the time rate at which the sound energy flows through a unit area normal to the direction of the propagation.

I = P / A P is power in watts. A is area in square meters. I is intensity in watts/ meter 2.

The intensity of a sound in a uniform medium is inversely proportional to the square of its distance from the point source.

Loudness depends on an auditory sensation in the consciousness of a human listener.

At 1000 Hz, the intensity of the average faintest audible sound (the threshold of hearing) is W/m 2.

Relative intensity is calculated by this equation: ß = 10 log I / I o ß is the relative intensity in decibels, I is the intensity of the sound, and I o is the threshold of hearing.

A small source uniformly emits sound energy at a rate of 2.0 W. Calculate the relative intensity at 34 m from the source.

A jet plane is found to have a relative intensity upon takeoff of 110 dB. Calculate the intensity of the sound the jet makes.

The threshold of pain is the upper intensity level for audible sounds. Above this level pain is produced rather than hearing.

When a vibrating object is put in contact with another object, the vibrating object can force the other object to vibrate at the same frequency, increasing amplitude.

These are called forced vibrations.

All objects that vibrate do so at a certain frequency (or frequencies) called the natural frequency.

This is the frequency where minimum energy is required to cause forced vibrations, and: the least amount of energy is required to continue the vibration.

When the sound produced by one object causes another object to vibrate at its natural frequency it is called resonance, or sympathetic vibrations.

Resonance occurs when the natural vibration rates of of two objects are the same or when the vibration rate of one is equal to one of the harmonics of the other.

Because of resonance soldiers “break step” when crossing bridges. Some bridges have signs that say “No galloping horses” for the same reason.