GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) Data conditioning and veto for TAMA burst analysis Masaki Ando and Koji Ishidoshiro.

Slides:



Advertisements
Similar presentations
For the Collaboration GWDAW 2005 Status of inspiral search in C6 and C7 Virgo data Frédérique MARION.
Advertisements

GWDAW 11 - Potsdam, 19/12/ Coincidence analysis between periodic source candidates in C6 and C7 Virgo data C.Palomba (INFN Roma) for the Virgo Collaboration.
SPIN. Seach Optimization Exhaustive search requires so much time and memory to perform verification realistically, must perform some shortcuts –reduce.
GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) Data conditioning and veto for TAMA burst analysis Masaki Ando and Koji Ishidoshiro.
GWDAW-8 (December 17-20, 2003, Milwaukee, Wisconsin, USA) Search for burst gravitational waves with TAMA data Masaki Ando Department of Physics, University.
HKS Analysis Log Jun 2006 part3 D.Kawama. 0 .今回の目次 1.Target での dE/dX 2.HKS sieve slit simulation(Geant4)
SPSSによるHosmer-Lemeshow検定について
9.線形写像.
学生の携帯電話選択理由 岡田隆太.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
情報処理A 第10回 Excelの使い方 その3.
5.連立一次方程式.
相関.
ノイズ. 雑音とも呼ばれる。(音でなくても、雑 音という) 入力データに含まれる、本来ほしくない 成分.
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
アルゴリズムとデータ構造 補足資料 7-4 「単純交換ソート exsort.c 」 横浜国立大学 理工学部 数物・電子情報系学科 富井尚志.
正弦波.
実装の流れと 今後のスケジュール 03k0014 岸原 大祐. システム概要 天気データをもとに、前向き推論をし ていき、親の代わりに子供に服装、持 ち物、気をつけることなどを教える。
階層分析法. 表3. 1 ルートR1R1 R2R2 R3R3 R4R4 R5R5 F1F1 最寄駅までの所要 時間(分) 10 7 F2F2 実乗車時間(分) F3F3 片道切符(円) ヶ月定期(円) 11,21011,9309,75012,46012,720.
HKS Analysis Log Jul 2006 Part1 D.Kawama. 第壱部 HKS Sieve Slit Analysis.
メニューに戻る メニューに戻る | 前表示スライド 前表示スライド G*power 3 の web ページ Windows はこちら Mac はこちら ダウンロード後,実行してインストール.
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
Self-efficacy(自己効力感)について
Online Veto Analysis of TAMA300 Daisuke Tatsumi National Astronomical Observatory of Japan The TAMA Collaboration 8 th GWDAW19 Dec Milwaukee, UWM,
LIGO-G Z Coherent Coincident Analysis of LIGO Burst Candidates Laura Cadonati Massachusetts Institute of Technology LIGO Scientific Collaboration.
Results from TOBAs Results from TOBAs Cross correlation analysis to search for a Stochastic Gravitational Wave Background University of Tokyo Ayaka Shoda.
LIGO-G Z Detector characterization for LIGO burst searches Shourov K. Chatterji for the LIGO Scientific Collaboration 10 th Gravitational Wave.
ILIAS GW Meeting Mallorca - October 23-24, 2005Luca Taffarello Status of the commissioning of the AURIGA detector Luca Taffarello (INFN Sezione di Padova)
HES-HKS & KaoS meeting Toshi Gogami 5/July/2012. Contents SPL + ENGE Gogami spectra (Λ,Σ 0, 12 Λ B) Level 1.
3 May 2011 VESF DA schoolD. Verkindt 1 Didier Verkindt Virgo-LAPP CNRS - Université de Savoie VESF Data Analysis School Data Quality and vetos.
TAMA binary inspiral event search Hideyuki Tagoshi (Osaka Univ., Japan) 3rd TAMA symposium, ICRR, 2/6/2003.
LIGO-G Z Peter Shawhan, for the LIGO Scientific Collaboration APS Meeting April 25, 2006 Search for Gravitational Wave Bursts in Data from the.
Analysis of nonstationarity in LIGO S5 data using the NoiseFloorMon output A proposal for a seismic Data Quality flag. R. Stone for the LSC The Center.
3rd TAMA Symposium (February 03, 2003, ICRR, Kashiwa, Japan) Masaki Ando (Department of physics, University of Tokyo) K. Arai, R. Takahashi, D. Tatsumi,
The Analysis of Binary Inspiral Signals in LIGO Data Jun-Qi Guo Sept.25, 2007 Department of Physics and Astronomy The University of Mississippi LIGO Scientific.
GWDAW11, Postdam 18th-21th December 2006 E. Cuoco, on behalf of Virgo collaboration 1 “Data quality studies for burst analysis of Virgo data acquired during.
 Process log  Status of working  Monitor data during EP & Rinsing process  Comparison of EP1 Period : 2012/2/23 ~ 2/27 Process : Degreasing (FM-20,
Distance to Ringing BHs: New GW Astronomy and Gravity Test Kunihito Ioka (KEK) Hiroyuki Nakano (RIT) Hirotaka Takahashi (Nagaoka U. Tech.)
Status of coalescing binaries search activities in Virgo GWDAW 11 Status of coalescing binaries search activities in Virgo GWDAW Dec 2006 Leone.
G030XXX-00-Z Excess power trigger generator Patrick Brady and Saikat Ray-Majumder University of Wisconsin-Milwaukee LIGO Scientific Collaboration.
Heat flow measurement in shallow seas through long-term temperature monitoring Hamamoto Hideki (Earthquake Research Institute,Univ. of Tokyo) Yamano Makoto.
Searching for Gravitational Waves from Binary Inspirals with LIGO Duncan Brown University of Wisconsin-Milwaukee for the LIGO Scientific Collaboration.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
LIGO-G Z The Q Pipeline search for gravitational-wave bursts with LIGO Shourov K. Chatterji for the LIGO Scientific Collaboration APS Meeting.
Prof. Noriyoshi Yamauchi
T.Akutsu, M.Ando, N.Kanda, D.Tatsumi, S.Telada, S.Miyoki, M.Ohashi and TAMA collaboration GWDAW10 UTB Texas 2005 Dec. 13.
S.Klimenko, G Z, December 2006, GWDAW11 Coherent detection and reconstruction of burst events in S5 data S.Klimenko, University of Florida for.
GWDAW10, UTB, Dec , Search for inspiraling neutron star binaries using TAMA300 data Hideyuki Tagoshi on behalf of the TAMA collaboration.
The 9th Gravitational Wave Data Analysis Workshop (December 15-18, 2004, Annecy, France) Results of the search for burst gravitational waves with the TAMA300.
Data Analysis Algorithm for GRB triggered Burst Search Soumya D. Mohanty Center for Gravitational Wave Astronomy University of Texas at Brownsville On.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
GWDAW11 – Potsdam Results by the IGEC2 collaboration on 2005 data Gabriele Vedovato for the IGEC2 collaboration.
High Power ③ 1 STF Cavity Group Process Log Data Summary of LFD Result of LFD Summary of LFD RF Kirk.
A Simulator for the LWA Masaya Kuniyoshi (UNM). Outline 1.Station Beam Model 2.Asymmetry Station Beam 3.Station Beam Error 4.Summary.
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
The first AURIGA-TAMA joint analysis proposal BAGGIO Lucio ICRR, University of Tokyo A Memorandum of Understanding between the AURIGA experiment and the.
High Power ④ 1 STF Cavity Group Process Log Data Summary of LFD Result of LFD Summary of LFD RF Kirk.
LIGO-G05????-00-Z Detector characterization for LIGO burst searches Shourov K. Chatterji For the LIGO Scientific Collaboration 10 th Gravitational Wave.
The Q Pipeline search for gravitational-wave bursts with LIGO
Investigation of laser energy absorption by ablation plasmas
Results from TOBAs Cross correlation analysis to search for a Stochastic Gravitational Wave Background University of Tokyo Ayaka Shoda M. Ando, K. Okada,
Coherent Coincident Analysis of LIGO Burst Candidates
Upper limits on gravitational wave bursts
Presentation transcript:

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) Data conditioning and veto for TAMA burst analysis Masaki Ando and Koji Ishidoshiro (Department of Physics, University of Tokyo) and the TAMA Collaboration

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 2 Introduction (1) - Veto analysis - Veto analysis by monitor signals GW detector is sensitive to external disturbances as well as real GWs Reject fake events using monitor signals recorded together with the main output of the detector Main outputMonitor signals Data conditioning (Whitening, freq.-band selection, Line removal) Burst-event extraction (Burst filter: excess-power filter) Coincidence analysis GW candidatesFake events No Yes Systematic survey of all monitor channels Fake reduction even without understandings of noise mechanisms

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 3 Introduction (2) - TAMA DT9 data - TAMA data acquisition and analysis system Used data in this work: TAMA DT9 (Dec – Jan. 2004) 200 hours of data (HDAQ 8ch, MDAQ 64ch)

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 4 Data Conditioning

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 5 Data conditioning (1) - Quality of data from detectors - Data conditioning ‘ideal’ data (predictable behavior known statistics) Stationary noise White noise Real data from detectors Non stationary behavior Drift of noise level Sudden excitations Frequency dependence Sensitivity degradation in high and low frequencies Line noises DT9 DT8 DT6 Data conditioning

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 6 Data conditioning (2) - TAMA conditioning filter - Data conditioning for TAMA burst analyses Normalization of the data by averaged nose level  Remove time and frequency dependence Line removal Select frequency band to be analyzed In addition … Calibration : Convert v (t) to h (t) Resampling : Data compression Requirements Small loss in signal power Keep GW waveform

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 7 Data conditioning (3) - Data flow - Data conditioning by FFT-IFFT Frequency selection, Whitening/Calibration, Resampling Fourier transform 72sec data Frequency-band selection Overwrite ‘0’ for unnecessary frequencies Outside of the observation band AC line freq., Violin-mode freq. Calibration peak Whitening Normalize by avg. spec. Calibration Convert to h(f) Raw time- series data 20kHz samp. Inverse Fourier transform Only below 5kHz Whitened time- series data 5kHz samp. Calibrated time- series data 5kHz samp.

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 8 Data conditioning (4) - Results of conditioning - Whitened data Without resamp. 5kHz resamp. Zoom Spectrum  Whitened Time-series data  Waveform is maintained with resampling

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 9 Data conditioning (5) - Calibrated spectrum - Calibrated data Blue: FFT of raw data  calib. Red: Conditioned data Power spectrum of conditioned time-series data and calibrated spectrum of original data

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 10 Event extraction

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 11 Event extraction (1) - Excess power filter - Burst event trigger Excess-power filter Evaluate power in given time-frequency windows  Extract non-stationary events Data conditioning time-series data in a given frequency band Calculate power in a given time window Power in a given time-frequency window  SNR Threshold, Clustering  Burst events Free selection of time-frequency window Previous works… Spectrogram  Averaged power Time-frequency resolution were limited by FFT length

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 12 Veto analysis

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 13 Veto analysis (1) - Concept - Coincidence analysis External disturbances tend to appear in some monitor signals  Reject fake events Burst events Coincidence  Reject GW candidate Threshold Main output (SNR) Monitor (SNR) Time * Simulated data

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 14 Veto analysis (2) - Parameter optimization - Parameter optimization Analysis parameters Time-frequency window Threshold Signals to be used for veto Optimized to have… High fake-rejection efficiency Low accidental coincidence Time-frequency window: Highest coincidence rate selected from 50 (18) time-frequency combinations Threshold for monitor signals: Accidental ~ 0.1% Accidental coincidence: estimated by 1-min.time-shifted data Coincidence ratio Accidental coincidence Coincidence Playground data (~10%) are used for this optimization 0.1% SNR Threshold (monitor signal)

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 15 Veto analysis (3) - Signal selection - Signal selection Even with small accidental rejection prob. (~0.1%) for each, many (~100) monitor signals may lose large amount of data Select signals to be used for veto Classify by the coincidence rate… <0.5 %  Do not use for veto %  Use for veto > 2%  Intensive veto with lower threshold: accidental ~ 0.5% Intensive fake-rejection with some monitor signals with strong correlations with the main signal Re-optimize the threshold HDAQ: 3 signals Rec. Pow., L+ FB, Dark Pow. MDAQ: 9 signals l- Err., l- FB, l+ Err., l+ FB, Bright Pow, Rec. Pow., EW Trans. Pow., SEIS center Z, Magnetic Field Y Selected signals

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 16 Veto analysis (4) - Intensity monitor - Example of coincident events Intensity monitor in the power recycling cavity (time series data after data conditioning) Main output Monitor signal

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 17 Veto analysis (5) - Seismic motion - Example of coincident events Seismic monitor – center room vertical motion (time series data after data conditioning) Main output Monitor signal

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 18 Veto analysis (6) - Magnetic field - Example of coincident events Magnetic field – center room perpend. direction (time series data after data conditioning) Main output Monitor signal

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 19 Veto analysis (7) - Veto results - Survival rate Accidental : 4.2% MDAQ 9 signals Accidental : 0.8% HDAQ 3 signals Accidental : 4.4% Total 12 signals Survival rate SNR Threshold Veto results with 178 hours of data

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 20 Summary

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 21 Summary Systematic survey of monitor signals Data conditioning filter Excess power burst filter Coincidence analysis between main and monitor signals Optimization of analysis parameters Analysis with TAMA DT9 data 200 hours data (10% are used as playground data) Correlations were found in 12 monitor signals (Intensity monitor, Seismic motion, Magnetic field) Reject 92% (SNR>10), 98% (SNR>100) fakes with 4.2% accidental rejection probability Current tasks Hardware signal-injection test  Confirm the safety of veto (already done for some of the monitor signals) Summary

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 22 End

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 23 Burst-wave analysis (3) - Data conditioning - Data conditioning Line removal AC line, Violin mode peak, Calibration peak Without Line Removal With Line Removal Method FFT 72sec data Reject line freq. components Inverse FFT Normalization Track the drift of noise level  Each spectrum is normalized by averaged noise spectrum Use 30min-averaged spectrum 30min (5.6x10 -4 Hz)

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 24 Time series data (after conditioning)

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 25 TAMA300 データ解析 (2) - パラメータの選択と解析結果 - パワーフィルタでの解析結果 青 : veto 前 赤 : veto 後 TAMA DT9, Run#140 (200 時間分 ) を解析 時間幅 : 5 通り (1.6msec – 25.6msec) 周波数帯 : 5 通り (500Hz 幅 x3, 1kHz 幅 x2) 以前のパラメータ D t = 12.5 [msec] D f = 2260 [Hz] SNR が最大のものを選び, 閾値と比較

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 26 TAMA300 データ解析 (3) - 偽イベント除去 - 強度モニタ信号によるフェイク除去 Off event (accidental) Coincidence 強度モニタ信号も解析, フェイク除去に用いる 時間幅 : 5 通り (1.6msec – 25.6msec) 周波数帯 : 1 通り ( Hz)  重力波チャンネルと同時に閾値以上のものがあれば、イベント候補から除去 F.D: 1% に閾値を設定

GWDAW-10 (December 14, 2005, University of Texas at Brownsville, U.S.A.) 27 TAMA300 データ解析 (4) - 偽イベント除去の解析結果 - パワーフィルタでの解析結果 青 : veto 前 赤 : veto 後 TAMA DT9, Run#140 (200 時間分 ) を解析 時間幅 : 5 通り (1.6msec – 25.6msec) 周波数帯 : 5 通り (500Hz 幅 x3, 1kHz 幅 x2) 2 桁程度低減 大きなイベントを 除去できていない