Lecture Objectives: 1)Perform binary division of two numbers. 2)Define dividend, divisor, quotient, and remainder. 3)Explain how division is accomplished.

Slides:



Advertisements
Similar presentations
The MIPS 32 1)Project 1 Discussion? 1)HW 2 Discussion? 2)We want to get some feel for programming in an assembly language - MIPS 32 We want to fully understand.
Advertisements

Chapter 3 Arithmetic for Computers. Exam 1 CSCE
Datorteknik IntegerMulDiv bild 1 MIPS mul/div instructions Multiply: mult $2,$3Hi, Lo = $2 x $3;64-bit signed product Multiply unsigned: multu$2,$3Hi,
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE Computer Organization Lecture 8 - Multiplication.
Integer division Pencil and paper binary division (dividend)(divisor) 1000.
Lecture 15: Computer Arithmetic Today’s topic –Division 1.
CMPT 334 Computer Organization Chapter 3 Arithmetic for Computers [Adapted from Computer Organization and Design 5 th Edition, Patterson & Hennessy, ©
CML CML CS 230: Computer Organization and Assembly Language Aviral Shrivastava Department of Computer Science and Engineering School of Computing and Informatics.
Chapter 3 Arithmetic for Computers. Multiplication More complicated than addition accomplished via shifting and addition More time and more area Let's.
361 div.1 Computer Architecture ECE 361 Lecture 7: ALU Design : Division.
Lecture 9 Sept 28 Chapter 3 Arithmetic for Computers.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 4: Arithmetic / Data Transfer Instructions Partially adapted from Computer Organization.
Arithmetic IV CPSC 321 Andreas Klappenecker. Any Questions?
Integer Multiplication and Division ICS 233 Computer Architecture and Assembly Language Dr. Aiman El-Maleh College of Computer Sciences and Engineering.
Computer Organization Multiplication and Division Feb 2005 Reading: Portions of these slides are derived from: Textbook figures © 1998 Morgan Kaufmann.
Integer Multiplication and Division
1 Lecture 8: Binary Multiplication & Division Today’s topics:  Addition/Subtraction  Multiplication  Division Reminder: get started early on assignment.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 6: Logic/Shift Instructions Partially adapted from Computer Organization and Design, 4.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Hao Ji.
CSE 246: Computer Arithmetic Algorithms and Hardware Design Instructor: Prof. Chung-Kuan Cheng Winter 2004 Lecture 7.
DIGITAL SYSTEMS TCE1111 Representation and Arithmetic Operations with Signed Numbers Week 6 and 7 (Lecture 1 of 2)
Lecture Objectives: 1)Explain the relationship between addition and subtraction with twos complement numbering systems 2)Explain the concept of numeric.
Lec 13Systems Architecture1 Systems Architecture Lecture 13: Integer Multiplication and Division Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan.
King Fahd University of Petroleum and Minerals King Fahd University of Petroleum and Minerals Computer Engineering Department Computer Engineering Department.
July 2005Computer Architecture, The Arithmetic/Logic UnitSlide 1 Part III The Arithmetic/Logic Unit.
Lecture 6: Multiply, Shift, and Divide
Chapter 3 Arithmetic for Computers (Integers). Florida A & M University - Department of Computer and Information Sciences Arithmetic for Computers Operations.
Conversion to Larger Number of Bits Ex: Immediate Field (signed 16 bit) to 32 bit Positive numbers have implied 0’s to the left. So, put 16 bit number.
05/03/2009CA&O Lecture 8,9,10 By Engr. Umbreen sabir1 Computer Arithmetic Computer Engineering Department.
Integer Multiplication and Division
Integer Multiplication and Division ICS 233 Computer Architecture and Assembly Language Dr. Aiman El-Maleh College of Computer Sciences and Engineering.
Partial Quotient Method In this division algorithm the children record on the right side of the problem. The first thing they do is divide. They ask themselves.
Csci 136 Computer Architecture II – Multiplication and Division
Chapter 3 Arithmetic for Computers. Chapter 3 — Arithmetic for Computers — 2 Arithmetic for Computers Operations on integers Addition and subtraction.
EI 209 Chapter 3.1CSE, 2015 EI 209 Computer Organization Fall 2015 Chapter 3: Arithmetic for Computers Haojin Zhu ( )
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers.
Division Check for 0 divisor Long division approach – If divisor ≤ dividend bits 1 bit in quotient, subtract – Otherwise 0 bit in quotient, bring down.
ECE/CS 552: Integer Dividers
CDA 3101 Spring 2016 Introduction to Computer Organization
CSE 246: Computer Arithmetic Algorithms and Hardware Design Instructor: Prof. Chung-Kuan Cheng Fall 2006 Lecture 7 Division.
Integer Multiplication, Division Arithmetic shift Twice the number of places MIPS multiply unit. mult, multu Significant bits Mfhi, mflo, div, divu Arithmetic.
Integer Multiplication and Division COE 301 Computer Organization Dr. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University.
Integer Operations Computer Organization and Assembly Language: Module 5.
Chapter 8 Computer Arithmetic. 8.1 Unsigned Notation Non-negative notation  It treats every number as either zero or a positive value  Range: 0 to 2.
Integer Multiplication and Division ICS 233 Computer Architecture & Assembly Language Prof. Muhamed Mudawar College of Computer Sciences and Engineering.
Arithmetic for Computers Chapter 3 1. Arithmetic for Computers  Operations on integers  Addition and subtraction  Multiplication and division  Dealing.
More Binary Arithmetic - Multiplication
Computer Architecture & Operations I
Integer Multiplication, Division Arithmetic shift
Multiplication and Division basics
Computer Architecture & Operations I
Integer Multiplication and Division
MIPS mul/div instructions
Morgan Kaufmann Publishers Arithmetic for Computers
CS 314 Computer Organization Fall Chapter 3: Arithmetic for Computers
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers
Lecture 8: Binary Multiplication & Division
Multiplication & Division
CDA 3101 Summer 2007 Introduction to Computer Organization
CDA 3101 Spring 2016 Introduction to Computer Organization
CS352H: Computer Systems Architecture
Lecture 8: Addition, Multiplication & Division
Lecture 8: Addition, Multiplication & Division
CSCI206 - Computer Organization & Programming
Systems Architecture I
CDA 3101 Summer 2007 Introduction to Computer Organization
Computation in Other Bases
Morgan Kaufmann Publishers Arithmetic for Computers
Presentation transcript:

Lecture Objectives: 1)Perform binary division of two numbers. 2)Define dividend, divisor, quotient, and remainder. 3)Explain how division is accomplished in computer hardware. 4)Construct a simple program which uses MIPS integer multiplication and division

Definitions (Pg 237) Dividend – The first operand of a divide operation Divisor – The second operand of a divide operation Quotient – The primary result of a divide operation Remainder – The secondary result of a division operation CS2710 Computer Organization2 14 / 5 = 2 rem 4

Division (Long Approach) Solve the following CS2710 Computer Organization3

Division Algorithm Check for 0 divisor first! Long division approach – If divisor ≤ dividend bits 1 bit in quotient, subtract – Otherwise 0 bit in quotient, bring down next dividend bit Restoring division – Do the subtract, and if remainder goes < 0, add divisor back Signed division – Divide using absolute values – Adjust sign of quotient and remainder as required CS2710 Computer Organization4

Faster Division Can’t use parallel hardware as in multiplier – In multiplication, we can compute partial products simultaneously – In division, we have to compute differences at each step Faster dividers (e.g. SRT division) generate multiple quotient bits per step – Still require multiple steps, using guesses and corrections – Uses a lookup table that must be precomputed Source of infamous 1994 Pentium flaw

Chapter 3 — Arithmetic for Computers — 6 MIPS Division Use HI/LO registers for result – HI: 32-bit remainder – LO: 32-bit quotient Instructions – div rs, rt / divu rs, rt – No overflow or divide-by-0 checking! Software must perform checks if required – Use mfhi, mflo to access result $hi and $lo are left unchanged during divide-by-0! They contain whatever values they had prior to divide-by-0

In Class Example Write an assembly program which will perform the following: – Read two integer numbers from the user – Print out their product – Print out their quotient – Print out the remainder (If the numbers are not evenly divisible) CS2710 Computer Organization7