STATIC ELECTRICITY.

Slides:



Advertisements
Similar presentations
Electricity Chapter 13.
Advertisements

Controlling Static Electricity
Chapter 19 It’s Electric!. Going Back to Basics A charge is not something you can see, weigh, or define, but you can observe how charge affects the behavior.
1.When two different insulating materials are rubbed together they become electrically charged. 2.Negative charges (electrons) rub off one material onto.
Physical Science 7.1 Electric Charge.
FRAC TANK EXPLOSIONS. Introduction R.J. Goodman, EHS & Operations Training Manager, XTO Energy Investigated 4 separate frac tank explosions that occurred.
1 NCEA Physics Electricity and Magnetism 2 Amber is the fossilized resin from some trees. Used in jewellery it was often vigorously polished with a soft.
FIRE FIGHTING PROCESS HAZARDS
North Slope Training Cooperative © North Slope Training Cooperative—revised May All rights reserved. Static Electricity for Non-Electrical Workers.
PROPERTIES OF FLAMMABLE MATERIALS. Flammability Flammable Flammable –Capable of being ignited and of burning –Synonymous with combustible.
Mine explosions Introduction Worst explosions Yearloss of livesPlace Germany Japan Japan India Yugoslavia USA.
Static Ignition Concerns in Aboveground Petroleum Storage Tanks Guy R. Colonna, PE NTEPS Ft. Worth, TX January 22, 2009.
Static Electricity A shamelessly stolen introduction Albert Ness September 15, 2008.
Creating Static Electricity. Electrical Insulators Conductivity is the ability of materials to allow electrons to move freely in them Materials that hold.
Cargo tank Atmosphere.
Liquid Fuel Safety Cummins Southern Plains, Ltd..
 Watch the Bill Nye Video and answer the corresponding questions.
Static Electricity 4 th form IGCSE Textbook: Chapter 8, p. 66.
Flammable and Combustible Liquids
Charging and Discharging Objects 9.3, 9.8, 9.5, 9.7.
1 L 24 Electricity & Magnetism [1] static electricity Why do I get a shock when I walk across the rug and touch the door knob? Why do socks stick to my.
CXS490 Carbon Dioxide Systems
Lesson 5 November 5 th, Lightning Lightning storm safety begins by watching for towering cloud formations that signal developing storms. Lightning.
Applications of Static Electricity
Static Electricity 2 Laws of Static Charges
Electricity Chapter 10. Recall this info… All matter is made of atoms which are the smallest particle of an element that has all the properties of that.
Static Electricity Static electricity: electric charge that can be collected and held in one place (static means not moving/changing). Static electricity.
Charging and Discharging Objects
By PARTHIBAN.N. Static electricity Electrostatic Turboelectric series Electrically charge Rub Negative charge Positive charge Proton Electron Neutral.
Flammable and Combustible Liquids. Introduction !The two primary hazards associated with flammable and combustible liquids are explosion and fire !Safe.
ELECTRICITY. Shoulder Partner Soon all cars, boats and airplanes will all run on electricity. Do you agree or disagree with this statement and why?
Fire depends on four things being present together, FUEL, HEAT, OXYGEN and A CHAIN REACTION. Fire will not start or continue if one is absent. FUEL is.
ELECTRICITY Chapter 16. Lesson One Vocabulary Electricity- a form of energy produced by moving electrons Electromagnet- a magnet made by coiling a wire.
Chapter 17: Static Electricity:.
ELECTROSTATICS IN OUR EVERYDAY LIVES. WHAT IS ELECTRIC DISCHARGE?  Electric discharge is the rapid transfer of electric charges.  It usually results.
Army Aviation Support Facility #1 Phoenix, Arizona
Electric Charge and Electric Force. Matter is made up of atoms. Atoms are made up of  Electrons  Protons  Neutrons.
Charging and Discharging Objects 9.3, 9.4, 9.8, 9.7.
Current Electricity is the rate at which charges pass a given point. The higher the current is the greater the number of charges pass the point each second.
ELECTRICITY. Electric Charge  Protons and electrons both have the property of charge. Recall that protons are positive and electrons are negative. 
1 L 24 Electricity & Magnetism [1] static electricity static electricity Why do I get a shock when I walk across the rug and touch the door knob? Why.
ELECTRIC CHARGES. Charges Most objects contain billions of charges. Usually the number of positive charges equals the number of negative charges making.
Static Electricity Safety Talk 1 Safety Talk Objectives
Static Electricity. Electricity Electricity is the set of physical phenomena associated with the presence and flow of electric charge. Electricity gives.
Grounding & Bonding Hazardous Materials Certification Study Guide 2 Definition of Terms (continued) Static Electricity - Electricity present on a surface.
Flammable Liquids Directorate of Training and Education
ELECTRICITY 1 : STATIC ELECTRICITY By the end of this presentation, you should be able to: Describe the two types of charge and the particle that carries.
Student Notes Unit P2: Physics for your future Topic 1: Static and current electricity.
Electricity & Magnetism Static, Currents, Circuits Magnetic Fields & Electro Magnets Motors & Generators.
XTO Energy Safety Training
Charging and Discharging Objects
Unit 3: Electricity and Magnetism Lesson 1
Answer b) Insulating What kind of materials can be given a charge?
Applications of Static Electricity
STATIC ELECTRICTY.
Static electricity.
Electrostatics Electricity at rest.
Chemical Transfer.
Topic 1 – Electric Charges
Electrons are transferred by friction from the cloth to the rod.
Dangers and Uses of Static Electricity
Forensic Fire investigation
Static Electricity Ms. Petrauskas
Electrons are transferred by friction from the cloth to the rod.
Intro to Electricity.
TOPIC 11 – STATIC ELECTRICITY. PHYSICS ONLY Uses
Electricity Mrs. “” Burge.
Forensic Fire investigation
P2 - Physics Static Electricity.
Electricity and Magnetism
Presentation transcript:

STATIC ELECTRICITY

What is static electricity? How does it is generated?

Static electricity Electricity in which the electrons and ions do not move is called static electricity Created by rubbing two objects together, allowing electrons to switch from one object to another Static electricity builds up and then leaps in a spark from one object to another

Static electricity Generated when 2 materials in contact are separated Electrical charges transferred from one to another producing nett +ve and –ve charges Opposite charges will attracted to one another As material separated, work done to overcome the attractive force produce PD between materials Very high PD – cause electrical breakdown of air, lead to spark produced.

Static electricity onboard Generated during normal operation involving friction: Between 2 solids substances Solid & liquid substances (friction from passage of liquid through hose) Solid substances coming together & separated Various sort of motion – person / material When sufficient / accumulated on surface, charged object / person come close to another which not grounded / unequally charged, 2 charges neutralise by jumping the gap Spark produced across this gap will ignite any explosive

General hazards & problems Possible ignition of flammable vapours or powders production of unexpected shocks in humans that result in injury cause industrial handling problems: Adhesion / repulsion of paper in printing industry Damage to delicate integrated circuits Blocking of powders and dusts in pipes fire or explosion for: Combustible substances in flammable range Static charge built up and discharge to a neighbour, usually earthed object ignite the surrounding flammable mixture

Source of static electricity Steaming cargo tank when steam passes through a pipe charge separation takes place between steam droplets and side of pipe Can be avoided by bonding themto the ship structure However, charge on the water droplets will accumulate in tanks Total charge may reach a proportion that sufficient to produce sparks Condition is worst if tank atmosphere is flammable

Source of static electricity Pipeline flow As oil flows in a pipe, some ions in the oil near to pipe surface will left behind Oil and pipe line become electrostatically charged but in opposite Problem reduced with oils having high electric conductivity - electric charge easily recombine to pipe surface / earthed Hazard exists when low electrical conductive oils, such as gasoline, kerosene, naphtha, jet fuel, diesel oil, gas oil, benzene, LO etc. Also known as 'white' oils Charge separation is poor but charge recombination is even poorer Rate of oil flows and presence of filters in cargo lines contribute to build up of static charge Charge dissipate to bottom and side of the tank with long time process (approx 30 minutes)

Source of static electricity Oil mixing with water During loading, any water lying at tank bottom or cargo lines become entrained in oil and spread out. Charge separation occur as water pass through oil and become oppositely charged Degree of charging depends on: rate of flow conductivity of oil Charging continue until all water droplet movements ceased If air is blown into tank, may redistributed charge throughout the tank Increase total residual charge in the oil

Source of static electricity Oil splashing / spraying Upon impact tank structure, oil droplets left some ions on metal surface – bounce off Oil become charged by splashing / spraying Hazard of explosion is high both volatile / non volatile types Above flash point Loaded into tanks containing flammable vapour

Source of static electricity Unbonded intermediate flange When oil flows in insulated rubber hose, static charge accumulated on metal flanges – hose connected Possibility of accumulation at flange ends – usually connected to ship / shore metal flange Charge accumulation at intermediate flange unable to recombine with any charge in oil flows inside the hose

Source of static electricity Stray current Ship alongside at jetty may have different electrical potential due to: Ship / jetty are cathodically protected with impressed current system Faulty electrical equipment earthed either ashore / onboard Galvanic potential difference between ship / shore

Source of static electricity Tank slack during heavy weather Effect of rubbing two metals Release of CO2 During discharge, rapid cooling took place resulting in formation of solid CO2 particle, charged when impact / contact with nozzle Lead to sparking

Condition for static charge leads to explosion Accumulated charge in liquid / solid causing electric field formed in gas mixture Flammable gas mixture Electric discharge must cause spark with sufficient intensity to ignite

To avoid electrostatic hazards Prevent charge accumulation / generation Prevent electrostatic discharge Prevent flammable gas mixture condition

But, unfortunately During cargo loading, electrostatic charge in oil may accumulate and concentrate on oil surface May discharge causing sparks if distance too close to tank structure Any protrude metal will act as lightning conductor – earthed probe

Permanent installed washing machine

Steel tape ullage Tape in contact with ullage pipe Tape not contact but operator stands barefoot on wet charged deck Tape and operator not contact with tank, but ullage tape when contact with oil, is charged – sparks occur between tape and ullage pipe

Sampling Using conductive line Sparking reduced by attached sample cans to a non conductive line Still contain charged oil and spark could jump from can to mouth of deck opening

Floating conductor in cargo tank Floating object on oil surface may provide short circuit between oil surface and tank structure Tin cans, piece of timber with protruding nails / bolts

To prevent such discharge Keep tank atmosphere non flammable by using IG Use non absorbent & non conductive ullage tape Used permanently installed ullaging device Take ullage through sounding pipes Use sampling can made of non conductive material with non conductive line

Precaution to prevent / minimise electrostatic charge Steaming cargo tank Used fixed apparatus to introduce steam Kept minimum steam velocity Earthed probe should not put in tank Loading cargo Initial stage – kept minimum flow rate Until all splashing / surface turbulence ceased Reduce charge generation in pipe flow – mixing of water in pipe line

Avoid loading both volatile and non volatile products having temperature above flash point Used of antistatic additive in oil Bonding and earthing Hose flanges including intermediate flanges All metal couplings for tank washing All metal objects onboard bonded together to ship structure

Pyrophoric iron sulphide Formed in cargo tank due to: Presence of iron oxide (rust) Presence of hydrogen sulphide gas Lack of oxygen Use of IG increase the possibility When iron sulphide exposed to air, oxidise to produce iron oxide & release sulphide / sulphur dioxide gas Generate heat until glow red – source of ignition

Special precaution in port Avoid stray current – connection / flange Mooring/towing lines, cargo connection ready to detach in case of fire Adjust rate of loading – avoid generation of electrostatic charge

Special precaution at sea Avoid static generation / discharge during tank washing Restrict use of steam for tank washing Keep tanks inerted