Build Basic Knowledge of Internal Combustion Engines (I.C.E)

Slides:



Advertisements
Similar presentations
Unit C: Agricultural Power Systems
Advertisements

Modern Automotive Technology PowerPoint for by Russell Krick
Systems Review 1 ATC Chapter 4.
Four Stroke Gas Engines
Engines and Motors.
Identifying Engine Systems and Their Components
Engine Choose a Number 23 End = Esc.
Small Engine Theory What is the purpose of a Small Engine?
Diesel Engine Components
PISTON ENGINES Part 1 Introduction.
Interest Approach Identify the major systems of an engine.
HOW THE ENGINE WORKS RK.
CHAPTER 3 INTERNAL COMBUSTION ENGINES
Internal Combustion Engines – The Diesel
Small Engines.
FLIGHT POWER Know basic engine principles.
Engine Systems and Components
Internal Combustion Engine
Mechanical Arrangement
Engines Internal combustion engine needs
Internal combustion engine
4 Stroke engine Stroke is defined as the movement of the piston from the 'bottom dead center' (BDC) to the 'top dead center' (TDC) or the other way round,
Unit A 6-1 Mechanical Systems and Technology. Problem Area 6 Agricultural Power Systems.
Diesel Engine 4 Stroke Cycle model
How a 4 Stroke Engines Work
Lesson 5.  Rudolf Diesel-1892-high-compression, self- ignition engine (intended to burn powered coal)  Herbert Akroyd Stuart-1888-oil fuel was ignited.
Internal Combustion Engines – The Diesel References Required Principles of Naval Engineering – (pP ) Optional Introduction to Naval Engineering.
DIESEL ENGINE ENGINE DEVELOPMENT DIRECTORATE
How Does a Gasoline Engine Work? by Ryan Cramer… 6 th grade.
PowerPlants Chapter 6 – Aircraft Systems
Engine Dissection Project Your team is dissecting a 3.5 HP single cylinder, 4 cycle engine, made by Briggs and Stratton in Milwaukee, Wisconsin These engines.
 A piston is a component of reciprocating engines, reciprocating pumps, gas compressors and pneumatic cylinders, among other similar mechanisms. It is.
FLIGHT POWER Know basic engine principles. 1. Define a list of terms related to basic engine principles. 2. Describe the mechanical, cooling, and ignition.
Four- Stroke Small Engines
Engine theory Red = on unit test.
Components of 4-stroke Engine Created by:- Prashanth Nair Sawan Makwana Jigar Chauhan Harshil Gohel Saumil Joshi.
Prepared by : Pavan Narkhede
Internal combustion engine
“DIESEL ENGINE” A SUMMER TRAINING PRESENTATION ON
Engine Terminology Engine Dynamics The Four Strokes Lesson 6 March 2008.
JAY DUDHELA Roll Num. - T13EC017 Enr. Num
PISTON ENGINE PROPULSION Chapter 1 Mechanical Arrangement 1933 Alvis Engine 2014 Hyundai Engine.
ENGINE DESIGN AND OPERATION. ENGINE CLASSIFICATIONS n VALVE ARRANGEMENT n CAMSHAFT LOCATION n IGNITION TYPE n CYLINDER ARRANGEMENT n NUMBER OF CYLINDERS.
1 Agricultural Power Systems Identifying Engine Systems and Their Components.
Aaron’s Engine Anatomy
Ag Science and Tech Small Gas Engines.
Engines Internal combustion engine needs
Four Stroke Gas Engines The four strokes of a internal combustion engine are: Intake Compression Power Exhaust Each cycle requires two revolutions of the.
The Internal Combustion Engine (Heat Engine)  This is the most used form of power unit in motor vehicles today. It generates its power by burning fuel.
Small Engines / Outdoor Power Equipment Riverside FFA Ag Engineering.
The Small Internal Combustion Engine. Objectives Identify the operating principles of the internal combustion engine. Identify the operating characteristics.
IDENTIFY THE MAJOR SYSTEMS OF AN ENGINE!. NEXT GENERATION SCIENCE/COMMON CORE STANDARDS ADDRESSED! CCSS.ELA Literacy.RST.9‐ 10.3 Follow precisely a complex.
Diesel Engine Components
HOW THE ENGINE WORKS RK.
Automotive Engine Terms
Internal Combustion engine
Understanding Principles of Operation of Internal Combustion Engines
Back Next.
Diesel Automotive Engines
Introduction to Engine Parts, Operation and Function
Engine Design and Classification
Diesel Engine 4 Stroke Cycle model
Engine Design and Classofocation
Understanding Principles of Operation of Internal Combustion Engines
Engine Dissection Project
Engine Definition: Engine: A machine that converts energy into mechanical force or motion.
Engine Choose a Number End = Esc 2 6.
Back Next.
Presentation transcript:

Build Basic Knowledge of Internal Combustion Engines (I.C.E)

Present the:  Piston and Combustion Chamber.  Engine Arrangements and Cylinder Configuration.  Con-rod and Crankshaft.  Intake and exhaust valves.  Cam-shaft and configuration SOHC, DOHC.  Auxiliary Gearing or Belt Drives. Demonstrate and discuss the interaction of components of an I.C.E.

 Cylindrical in shape known as a Cylinder.  Pressurised Chamber.  Made for Combustion.  Directs Explosive Force to Piston.

 Fits inside Combustion Chamber.  Explosive force acts on the Piston Head.  Produces LINEAR movement.  Friction creates heat.  Oil cooling by Scraper Rings.

 Straight (also known as Inline engines).  Single Bank of Cylinders.

 V Type (V6, V8, V12)  Two Banks of Cylinders < 180º

 O Type (Opposed Cylinders)  Two Banks of Cylinders = 180º

 W Type (W12)  Three Banks of Cylinders 90º

 Straight  V  O

 Other less popular variations: X – 4 Banks of Cylinders (1 Crankshaft). H – 4 Banks of Cylinders (2 Crankshaft). U – 2 Banks of Cylinders (2 Crankshaft).  Deltic – 3 Banks (Triangular Shape).  Star – 5 or more banks.

 LINEAR movement (Piston).  ROTATIONAL movement (Wheel).

 Pistons connect to the Crankshaft.  Explosive force of combustion pushes the Piston downwards (LINEAR).  Offset pins transfer linear force to rotational force.

 A 2 nd Explosion on a different offset pin will push that pin down.  Causing the Crankshaft to turn, and the 1 st piston to rise back up the Cylinder.

 Piston Head connects to the Con Rod by Gudgeon Pin.  Con Rod connects to Crankshaft in a bearing.  White metal bearing is 2x ‘U shapes’ tightened by bolts.

 Piston Head to the Con Rod by Gudgeon Pin. Con Rod connects to Crankshaft.  Transmits force from Piston to Crank.

 When OPEN provide the cylinder with a fresh charge of air for compression.  When CLOSED creates a pressurised chamber for compression.

 When OPEN purges exhaust gas from the cylinder to the exhaust system.  When CLOSED creates a pressurised chamber for compression.

What prevents the valves from staying open and always ensures they are closed?

A Spring ensures the valve remains: CLOSED until something pushes down on the Stem Top.

 A Cam Shaft is a single shaft with egg shaped Cams fitted.  The Cams apply pressure at different intervals to different valves.  So Cylinder 1 may be on an exhaust stroke whilst Cylinder 2 may be on a intake stroke.

A Single Overhead Camshaft (SOHC). on a Straight 4 Cylinder Engine.

A Double Overhead Camshaft (DOHC). may be used on a V Type Engine or may just operate different Valves.

 If the valves do not operate at the correct time, the chamber will not be pressurised.  The spark would not ignite the gas if there was no pressurised fuel/air mix.  Without an explosion, the Piston will not be forced downwards.  The Crankshaft has no linear movement to convert to rotation.

A water pump cools the engine block due to the incredibly hot temperatures of the cylinder combustion chambers and valves. How is the water pump powered/driven?

 A non-slipping mechanical belt driven by the Crankshaft.  Made of durable rubber.  Known in cars as Timing Belts.  Speed increased by increasing engine speed; therefore more power created, more heat is generated, so more coolant cools the engine block.

 Same purpose as a timing belt but replaces a belt with grooved teeth gears.  Often found in larger engines due to cost.  No requirement for timing belt change when purchasing a 2 nd hand car.

 When the piston is at Top Dead Centre (highest point)  If either valve was open, a collision with the piston could bend the valves.  Therefore the valves must be timed with the piston. How is this achieved?

 Belt Drive  Timing Belt  Cam Belt  Auxiliary Gears Can drive the following auxiliaries:  CamShaft (SOHC) or both CamShafts (DOHC)  Water Pump  Oil Pump and Fuel Pump

 A rotating mechanical device weight.  Resists sudden changes in speed by storing rotational movement (kinetic energy).  A car going down a hill; will slowly speed up as the fly wheel prevents the engine over speeding. The fuel is then decreased.  Same principle applies going up hill, the flywheel weight will still turn the engine until the driver has caught up (until the flywheel stored energy runs out)

SUCK, SQUEEZE, BANG, BLOW! Intake Stroke, Compression Stroke, Combustion Power Stroke, Exhaust Stroke.  The Fuel Spray Head injects fuel at the compression stroke.  Fuel mixes with the high pressure compressed air.  The fuel/air mix is then ignited by a spark.

 A Spark Plug creates a spark (arcing across 2 contacts) for a combustion explosion  Will operate only at the point where all air is fully compressed and fuel is mixed.  Require very high voltages 25,000 – 60,000volts.  The current is very small. ( static shocks are 1,000 – 23,000).

 The spark ignites the fuel injected which has mixed with the compressed air in the pressure tight cylinder.  The explosion generated causes force on the Piston Head downwards creating linear movement.  This rotates the Crankshaft and the exhaust valve opens. As the Crankshaft rotates the piston will rise back up purging the exhaust gases.

Build Basic Knowledge of Internal Combustion Engines (I.C.E) Session 4 – Basic Components of an Engine

Objectives Covered:  Piston and Combustion Chamber.  Engine Arrangements and Cylinder Configuration.  Con-rod and Crankshaft.  Intake and exhaust valves.  Cam-shaft and configuration SOHC, DOHC.  Auxiliary Gearing or Belt Drives.  Interaction of all Components. Module Learning Objective: “Students understand the basic components of a modern engine and there interaction”.