Spectrometer HELLRIDE as a Testing Ground for Fulldisk Velocity Mapping Joachim Staiger, KIS Freiburg - HELLRIDE Overview - First Observations at VTT 2013.

Slides:



Advertisements
Similar presentations
000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.
Advertisements

Target Test Diagnostics Richard Brownsword Engineering, Rutherford Appleton Laboratory.
University College London, Optical Science Laboratory bHROS Progress bench-mounted High Resolution Optical Spectrograph bHROS bHROS Progress General.
CMSC 2006 Orlando Active Alignment System for the LSST William J. Gressler LSST Project National Optical Astronomy Observatory (NOAO) Scott Sandwith New.
M3 Instrument Design and Expected Performance Robert O. Green 12 May 2005.
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Calibration-Diagnostics Spectral Photometric/Gain Polarimetric Empirical or hardware calibrators NIRSPC or G Disk or Corona.
Pre-launch Characterization of the CERES Flight Model 5 (FM5) Instrument on NPP S. Thomas a, K. J. Priestley b, M. Shankar a, N. P. Smith a, M. G. Timcoe.
Currently: 3 year ( ) NSF-supported UF/IAP collaborative project "Methods and Instruments for High-Precision Characterization of LIGO Optical Components"
VLBI: Visible Light Broadband Imager Instrument Conceptual Design Presentation Tom Berger Lockheed Martin Solar and Astrophysics Lab.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
Motion Tracking. Image Processing and Computer Vision: 82 Introduction Finding how objects have moved in an image sequence Movement in space Movement.
PERFORMANCE OF THE DELPHI REFRACTOMETER IN MONITORING THE RICH RADIATORS A. Filippas 1, E. Fokitis 1, S. Maltezos 1, K. Patrinos 1, and M. Davenport 2.
1.B – Solar Dynamo 1.C – Global Circulation 1.D – Irradiance Sources 1.H – Far-side Imaging 1.F – Solar Subsurface Weather 1.E – Coronal Magnetic Field.
Page 1HMI Team Meeting – January 26, 2005 HMI Mission Operations Rock Bush HMI Stanford Program Manager Stanford University
Advanced Technology Center 1 HMI Rasmus Larsen / Processing Modules Stanford University HMI Team Meeting – May 2003 Processing Module Development Rasmus.
IFTSUV: an Imaging Fourier Transform Spectrometer in the UV Anne Millard, 3 rd year PhD student, directed by P. Lemaire and J.-C. Vial.
Berkeley workshop summary Redundancy : dual detector Field of view : 3”x6” Spectrograph length goal: < 400 mm Isostatic mount on the base plate with control.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Freiburg, May 2011 EST Design Study. End of Phase-III Meeting European Solar Telescope Design Study End of Phase III Meeting WP Instrument.
Project Overview Laser Spectroscopy Group A. A. Ruth Department of Physics, University College Cork, Cork, Ireland.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
Concepts for Combining Different Sensors for CLIC Final Focus Stabilisation David Urner Armin Reichold.
1 Status of Ring-diagram Analysis of MOTH Data Kiran Jain Collaborators: F. Hill, C. Toner.
Solar-B Mission Preparation Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS Chief Observer Mullard.
July 2001Zanjan, Iran1 Atmospheric Profilers Marc Sarazin (European Southern Observatory)
An Introduction to Helioseismology (Local) 2008 Solar Physics Summer School June 16-20, Sacramento Peak Observatory, Sunspot, NM.
Big Bear Solar Observatory NST Main Features  All reflecting, off-axis Gregory optical configuration  PM: 1.6 m clear aperture with f/2.4  Figuring.
SPECTROSCOPIC DIAGNOSTIC COMPLEX FOR STUDYING PULSED TOKAMAK PLASMA Yu. Golubovskii, Yu. Ionikh, A. Mestchanov, V. Milenin, I. Porokhova, N. Timofeev Saint-Petersburg.
The Field Camera Unit Project definition, organization, planning S. Scuderi INAF – Catania.
Solar observation modes: Commissioning and operational C. Vocks and G. Mann 1. Spectrometer and imaging modes 2. Commissioning proposals 3. Operational.
1 Solar-B Data Co-Alignment Plan T.Shimizu (NAOJ) Solar-B MO&DA Working Group Solar-B 4 th Science
Artificial Vision-Based Tele-Operation for Lunar Exploration Students Aaron Roney, Albert Soto, Brian Kuehner, David Taylor, Bonnie Stern, Nicholas Logan,
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
September 14, Monday 4. Tools for Solar Observations-II Spectrographs. Measurements of the line shift.
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
Space-Qualified Hardware for the CALIPSO Lidar
TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.
1st SPRING Workshop, November 2013 Optimised data archiving for a synoptic telescope M. Klvaňa, M. Sobotka, and M.Švanda Astronomical Institute, Academy.
NIRSpec Operations Concept Michael Regan(STScI), Jeff Valenti (STScI) Wolfram Freduling(ECF), Harald Kuntschner(ECF), Robert Fosbury (ECF)
Page 1lOhcO 9 meeting From MDI to HMI Jesper Schou Stanford University
30 Nov 2005User Committee1 Instruments: NAC. 30 Nov 2005User Committee2 Instruments: NAC.
Optical & Radiometric Conceptual Design of EMAS Thermal Port Upgrade Kickoff Meeting June 29, 2010 Roy W. Esplin.
2006/4/17Extended Image Co-alignment of Solar-B SOT/XRT/EIS Data T. Shimizu (ISAS/JAXA)
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
H.E.S.S. - MAGIC – CTA meeting Technical aspects of current & future instrumentation Telescope structures Camera designs Photon detectors Mirrors.
Design of an Inertial Fusion Energy Target Injection & Tracking System Ronald Petzoldt, Dan Goodin, Mike Hollins, Chuck Gibson, Neil Alexander, and Gottfried.
GWOLF and VALIDAR Comparisons M. Kavaya & G. Koch NASA/LaRC D. Emmitt & S. Wood SWA Lidar Working Group Meeting Sedona, AZ January 2004.
Transit of Venus Observations From National Solar Observatory.
XRT SOT Alignment DeLuca With comments from Tarbell & Metcalf 21-Jan-2006.
SMART, Hida and next NAGATA, SHIN’ICHI. Solar Magnetic Activity Research Telescope (SMART) The telescope was built at the Hida Observatory Kyoto University.
Fabry-Perot Approach to SPRING Sanjay Gosain NSO.
Spectrometer The instrument used for the astronomers MinGyu Kim
Date of download: 6/8/2016 Copyright © 2016 SPIE. All rights reserved. The portions of the datacube collected during a single detector integration period.
Using a Radio Telescope
GONG Measurements – Pre-eruptive signatures
PSP, SO, and Ground-based Synoptic Observations from NSO
On-Orbit Performance and Calibration of the HMI Instrument J
HMI Science Investigation Overview
HMI Investigation Overview
Total Station Surveying
GAJENDRA KUMAR EC 3rd YR. ROLL NO
SLAC DOE Program Review
Launch and On-orbit Checkout
JEM-SMILES Instrumental Capabilities
Scanners – Robots – Measurement Plans Synergy in Motion
Modern Observational/Instrumentation Techniques Astronomy 500
Makmal Fizik Angkasa Research Activities and Projects in Space Physics Lab Prof. Dr. Mohd. Zambri Zainuddin Makmal Fizik Angkasa Jabatan Fizik.
Optics Alan Title, HMI-LMSAL Lead,
Alignment, Scanning Malcolm Guthrie
Presentation transcript:

Spectrometer HELLRIDE as a Testing Ground for Fulldisk Velocity Mapping Joachim Staiger, KIS Freiburg - HELLRIDE Overview - First Observations at VTT Problems - Ongoing Development - Fulldisk „Lab“ - Fulldisk Tests 2014

HELLRIDE Overview Instrument Type:2D Fabry-Perot Spectrometer Operation Focus:Multiline Operation 16 Bands available 100“-by-100“ FOV standard 300“-by-300“ synthetic Fulldisk ?

HELLRIDE Overview HELLRIDE stands for HELioseismological Large Regions Interferometric Device

HELLRIDE Overview Scientific Target:- Analysing Waves in the Atmosphere - Analysing Flares Requirements:- Long Recording Times Oportunity:- Future VTT Usage

HELLRIDE Overview Development Goals - Simple Design - Easy Handling - Step-by-Step Approach - Cost effective Approach (Stock / Scrap)

HELLRIDE Overview Optical Layout - Dual Etalon Tandem Configuration - Collimated Beam Design

HELLRIDE Overview Etalons - IC Optical EC50 and EC nm – 860 nm

HELLRIDE Overview Narrowband Filter Mount - 4 x 4 Matrix μ Repositioning

HELLRIDE Overview Narrowband Filter Mount - 4 x 4 Matrix μ Repositioning

HELLRIDE Overview Narrowband Detector - Dalsa 1M30 CCD - 14 μ Pixel Square - 4-Axis Mount

HELLRIDE Overview „Onboard“ Software - System Simulation - Data Quicklook - Ringdiagramm Pipeline (64 x 64)

HELLRIDE Overview Status:Installed at VTT since 2013

First Observations 2013 Campaign 1:A. Wisniewska (April, 6 Days) Campaign 2:A. Wisniewska (September, 6 Days) Sunspot / Quiet Sun 2 Spectral Lines (5434 / 5890) Cadence 15 secs 10 Hour Records

First Light Results 2013, A.Wisniewska Linear Powerspectrum, 2 Hours, 5434 Angstr. Pixel Average

First Light Results 2013, A.Wisniewska Ringdiagram 64x64, 8 Hours 5434 Angstr., 3.0 mHz

First (and only) Multiline Test 2009 Multiline Ringdiagramms 4 Hours, 60 secs Cadence, 16 Lines Using GFPI Etalons Spectral Lines:517.2 nmMg I20 Scansteps nmC I15 Scansteps nmFe I15 Scansteps nmTi I15 Scansteps nmFe I10 Scansteps nmFe I20 Scansteps nmNa I30 Scansteps nmNa I30 Scansteps nmFe I20 Scansteps nm Telluric15 Scansteps nmFe I15 Scansteps nmH-Alpha25 Scansteps nmHe-Ne15 Scansteps nmFe I20 Scansteps nmFe I20 Scansteps nmFe I10 Scansteps

First (and only) Multiline Test 2009 Multiline Ringdiagramms 4 Hours, 60 secs Cadence, 16 Lines Using GFPI Etalons

Problems and Shortcomings Crash after appr. 2 hours:Resolved- Axis 2 Malfunction:Not yet resolvedSpring 2014 Graphics Overload:Not yet resolvedSpring 2014 Camera Upgrade:Not yet resolvedAutumn 2014 Outdated VTT HandlingUnder developmentSpring 2014 Environmental Exposure:Not yet resolved2014 / 2015 Image Motion:Not yet resolvedSpring 2015 Lateral FOV DriftsUnder development2015 / 2016 Data Processing Software:Under development2015

Problems and Shortcomings Pending Tasks: Update:Aging Components Camera System Computing Reduce:Thermal Exposure Straylight Seeing based Image Motion Pointing Instabilities

Developments Encasement - Shield off Dust - Shield off Straylight - Reduce Temperature Fluctuations

Developments High Speed Drives - No rotating Parts - Moving EM Field - 10 G Acceleration-

Developments Tablet Usage - Versatility - Hardware Reduction - Remote Handling

Developments Realtime Velocity Mapping - Enable Realtime Ringdiagram-Pipeline - Reduce Data Storage Bottleneck - Enable Remote Operations - Offline Tests Successful - Calibration with SDO Pending - Will be implemented as an Observers Option

Developments Doppler Signal Locking - Laser attached to Matrix Mount - Continuous Laser Line Scanning

Developments Doppler Signal Locking - Laser attached to Matrix Mount - Continuous Laser Line Scanning

Developments Doppler Signal Locking - Using Frequency stabilized Laser (< 3 MHz) - Drift < 2 m/sec, 8 hours - Realtime Peak Location Processing - Feedback to Etalons

Developments New Finesse Calibration - Adust Etalon Plate Parallelity - Stabilize Wavelength Purity

Developments New Finesse Calibration - Adust Etalon Plate Parallelity - Stabilize Wavelength Purity

Developments New Spectroscopic Tracking Problem:- Image Motion - No AO Usage over 10 hours. Solution:- Spectroscopic Correlation - Individual Wavelength Tracking - Overlay Wavelengths

Developments Remote Control Motivation:Off-Lab Monitoring Remote Maintenance Staff Limited Operation Automated Operation Realization:TCP/IP Sockets Client / Server Architecture ASCII Commands

Developments Full Disk Velocity Mapping Tests Goals:- Evaluate Exposure Times - Evaluate Scan Step Requirements - Evaluate Readout Options - Evaluate Multiline Options - Evaluate Fulldisk / Subfield-Tiling - Test Flat Procedures - Compare to SDO /GONG - Extrapolate from 5 cm to 50 cm Aperture

Developments New Absolute Pointing Existing Problem:- Thermally related Drifts

Developments New Absolute Pointing Thermal Drifts:- May Influence Co-Alignment - May influence Data Analysis - Is Inherent Pointing Shortcoming

Developments New Absolute Pointing Thermal Drifts:- May Influence Co-Alignment - May influence Data Analysis - Is Inherent Pointing Shortcoming

Developments New Absolute Pointing Thermal Drifts:- May Influence Co-Alignment - May influence Data Analysis - Is Inherent Pointing Shortcoming

Developments New Absolute Pointing Thermal Drifts:- May Influence Co-Alignment - May influence Data Analysis - Is Inherent Pointing Shortcoming

Developments New Absolute Pointing Goal:- Develop New Pointing Model

Developments New Absolute Pointing Approach:- Guiding Telescope is Imaging Telescope - Pointing is of Barcode Type Reading

Developments New Absolute Pointing Tests:- VTT / SDO VTT / GONG VTT / SUMER / IRIS 2013

Developments New Absolute Pointing Benefits:- Delivering absolute Coordinates continuously - First Primary Beam Closed-Loop Operation - Significant Stability Improvement - No rigid Link between Guiding and Main Telescope - Multiple Telescopes may share single Guiding Telescope - Single Telescope may use Multiple Guiding Telescopes - Minimum Engineering required - Off-the-Shelf Components may be used.

Fulldisk „Laboratory“ Usage: - New Pointing - HELLRIDE Fulldisk Tests - IAC Coelo Test (Solar Orbiter) ?

Fulldisk „Laboratory“ Locations: HELLRIDE Fulldisk „Lab“

Fulldisk „Laboratory“ Test Setup 2012: - Setup HELLRIDE Data Aquis. System - Divert Guiding Beam to Dalsa - Fit Sun to Detector - Record Fulldisk at Short Cadence

Fulldisk „Laboratory“ Test Setup 2012:

Fulldisk „Laboratory“ Test Setup 2012: Problems:- Mounting / Dismounting required - Vertical Optical Axis - „Transit“-Area

Fulldisk „Laboratory“ New Setup 2013 / 2014:

Fulldisk „Laboratory“ New Setup 2013 / 2014:

Fulldisk „Laboratory“ New Setup 2013 / 2014:

Fulldisk „Laboratory“ New Setup 2013 / 2014:

Fulldisk „Laboratory“ New Setup 2013 / 2014: - Secluded Location off „Transit“-Area - Beamsplitter instead of Mirror - Continuous Operation - Horizontal Optical Bench - Elevator Access („HELLRIDE Drive-In“) - Standard HELLRIDE Software may be used - Retrofit time appr. 1 – 2 hours

Fulldisk „Laboratory“ Mech. Engineering: Thomas Sonner

The End