Origin of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) AGNs GRBs clusters astro-ph/0701835 (brief review) collaborators: G. Sigl (APC), F. Miniati.

Slides:



Advertisements
Similar presentations
Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Active Galaxies PHYS390 Astrophysics Professor Lee Carkner Lecture 22.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
1 Evidence for UHECR Acceleration from Fermi Observations of AGNs and GRBs Chuck Dermer Space Science Division US Naval Research Laboratory, Washington,
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
Extragalactic Jets and GLAST Łukasz Stawarz KIPAC, Stanford University.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
銀河団における超高エネルギー物理過程 w. Felix Aharonian (MPIK), 杉山直 ( 国立天文台 ) 井上 進 ( 国立天文台 ) w. Günter Sigl, Eric Armengaud (IAP) Francesco Miniati (ETH) ZeV GeV TeV 100.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
18 May, 2006KAW4, Daejeon1 Astrophysical Sources of UHECRs Tom Jones University of Minnesota.
Gamma Ray Sources Chuck Dermer Naval Research Laboratory Washington, DC USA TAUP 2007, Sendai, Japan, September 2007 Ground-based Cherenkov: VERITAS HESS.
Blazars and Neutrinos C. Dermer (Naval Research Laboratory) Collaborators: A. M. Atoyan (Universite de Montreal) M. Böttcher (Rice University) R. Schlickeiser.
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Astroparticle physics 3. Supernovae, neutrinos and high energy cosmic-rays in the local Universe Alberto Carramiñana Instituto Nacional de Astrofísica,
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
Gamma-Rays and UHE Cosmic Rays from Clusters of Galaxies Susumu Inoue (Nat. Astron. Obs. Japan) and collaborators GeV 100 keV HESS Auger GLAST Suzaku ZeV.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
1st page of proposal with 2 pictures and institution list 1.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
Propagation and Composition of Ultra High Energy Cosmic Rays
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
Astrophysics of the Highest Energy Cosmic Rays Paul Sommers Cracow, Poland January 10, 2004.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
New constraints on light bosons from the high energy universe Denis WOUTERS Service de Physique des Particules Supervisor: Pierre BRUN D. Wouters and P.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Gamma Rays from the Radio Galaxy M87
Particle Acceleration in the Universe
ultra high energy cosmic rays: theoretical aspects
Extragalactic Jets and GLAST
Predictions of Ultra - High Energy Neutrino fluxes
Wei Wang National Astronomical Observatories, Beijing
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

Origin of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) AGNs GRBs clusters astro-ph/ (brief review) collaborators: G. Sigl (APC), F. Miniati (ETH), E. Armengaud (CEA) F. Aharonian (MPIK), N. Sugiyama (Nagoya ) K. Asano (NAOJ) Astrophysical Sources, Gamma-Ray Connection

outline 1. general aspects 2. physics of selected UHECR source candidates III. cluster accretion shocks I. AGNs II. GRBs UHECR nuclei source candidates: acceleration & energetics UHE p-induced X/  -rays GeV-TeV  -rays propagation: extragalactic radiation and B fields neutrinos -> Halzen different AGN types UHECR-induced secondary X/  radiation signatures

The problem: UHECRs are the highest energy particles observed in the universe, exceeding eV. Their origin is unknown. E max ~ 3x10 20 eV ~50J ~kinetic E of 100km/h fastball (220km/h tennis serve)

UHECR observations spectrumat least up to eV arrival directions composition light dominant up to ~<2x10 19 eV? >10 20 eV X max [g cm -2 ] globally isotropic no ID with sources AGASA HiRes before July (ICRC) 07 observations -> Kampert

UHECRs: energy losses during propagation p+  CMB → p+ e + e - E p >~5x10 17 eV p+  CMB → p+  E p >~7x10 19 eV L p, 20eV <~100 Mpc A+  CMB → A+ e + e - A+  FIRB → A-iN +iN Nagano & Watson 00 Fe p  E L loss L Fe, 20eV <~300 Mpc protons: photopair+photopion nuclei: photopair+photodisint. e.g. Stecker & Salamon 99 Watson astro-ph/ nuclei possible at the highest E! Anchordoqui+, Allard+, Armengaud+, … (Greisen-Zatsepin-Kuzmin limit)

extragalactic B fields Sigl, Miniati & Ensslin 03,04 should be correlated with large scale struc. Dolag+ 04, 05 Brüggen+ 05 crucial differences between theoretical models very uncertain observationally and theoretically Galactic B fields also uncertain Kang+ 07 propagation -> Das secondary photon/neutrino signatures desirable to pinpoint sources!

top-down models: very strongly constrained topological defects, EHE Z-bursts, UHECRons, superheavy DM… Yamamoto+ arXiv: Auger spectrum spectral steepening at E> eV (6 sigma) also claimed by HiRes Auger photon limits Semikoz+ arXiv: superheavy DM ruled out

UHECR sources: acceleration GRBs AGN jets clusters adapted from Yoshida & Dai 98 R B B~ ∝ R -1 “Hillas plot” E ≦ Ze B R (v/c) confinement acceleration vs: E max escape source lifetime adiab. expansion loss radiative loss

shock acceleration - power-law spectrum dN/dE~ ∝ E -2 for strong shock - very efficient up to ~50% of kinetic energy shock front upstreamdownstream consistent with observations - in-situ: earth-solar wind, … - SNRs, radio galaxy hot spots, … acceleration -> Berezhko

UHECR sources: energy budget differential (per unit z) dE kin /dz=(dt/dz)∫dL L dn/dL UHECR budget u CR ~3x erg cm -3 ~10 54 erg Mpc -3 kinetic E input into the universe supernovae, 19 eV AGNs (radio galaxies) z-dep. LF Willott+ 01 L kin -L rad correlation Rawlings 92 ∝ star formation rate Porciani & Madau 01 cluster accretion L acc (M)~0.9x10 46 (M/10 15 M  ) 5/3 erg/s Press Schechter mass function Keshet+ 04 E GRB =10 53 erg, indep. of beaming E SN =10 51 erg

GeV blazar active galactic nuclei (AGNs) supermassive black hole +accretion disk (flow) radio- quiet (no jet) radio-loud (relativistic jet) FR II radio galaxy FR I radio galaxy TeV blazar (BL Lac) Seyfert galaxy low- power high- power radio-quiet quasar activity timescales ~ yr ~<UHECR delay time ~90% ~9% ~<1%

AGNs: acceleration sites from Chandra webpage Seyfert or radio-quiet quasar near-nucleus? R~ cm B~10 4 G? E max ~E p  ~<10 18 eV e.g. Szabo & Protheroe 94 UHECR accel. not expected inconsistent with observed keV-MeV

AGNs: acceleration sites inner jet (blazar) R~ cm B~0.1-1G from Chandra webpage E max ~E p  ~<10 20 eV e.g. Mannheim 93 low power (FR I) radio galaxy near-nucleus? adiabatic loss -> n conversion escape? shear-layer acceleration? accel./escape non-trivial UHECR accel. not expected

AGNs: acceleration sites inner jet (blazar) hot spot R~10 21 cm B~1mG from Chandra webpage E max ~E p  ~<10 20 eV E max ~E esc ~ eV e.g. Rachen & Biermann 93 high power (FR II) radio galaxy near-nucleus? UHECR accel. not expected accel./escape non-trivial accel./escape easiest

AGNs: anisotropy expectations? Takami+ 06 anisotropy expectations for different AGN types Takami, SI+, in prep. n s =5x10 -6 Mpc -3

AGNs: UHECR-induced secondary emission Aharonian 02 Armengaud, Sigl & Miniati 05 proton synchrotron from hot spots/knots “GZK” radiation from intracluster AGNs

GRBs internal + external (forward + reverse) shocks adapted from Meszaros 01 prompt X-  emission internal shocks optical flash, radio flare external reverse shock radio-IR-opt-X afterglow external forward shock Waxman 95, Vietri 95 UHECR accel. site Gialis & Pelletier 03 Wick, Dermer & Atoyan 04

GRBs as UHECR sources Waxman & Miralda-Escude 96 time delay t(E p,D)~  2 D/4c ~10 7 yr E p,20 -2 D 100Mpc 2 l Mpc B -8 2 individual sources ->narrow spectrum at given time

GRBs: GeV-TeV  signature of UHECRs Asano & Inoue ApJ, in press arXiv: inverse Compton proton synchrotron - electrons+protons in internal shocks (prompt phase) - pair cascading, p  interactions, various radiative processes… - parameters: E sh,  t, , f B =u B /u e, assume u p =u e, p p =2

GRBs: GeV-TeV  signature of UHECRs secondary pair synchrotron+muon synchrotron+ double (multiple) breaks -> proton signature GLAST, MAGIC (II), HESS (II), VERITAS, CANG.III … MILAGRO, Auger…

cluster accretion shocks accretion (minor merger) Ryu+ 03 strong shocks Kang, Rachen, Biermann 97 Fe nuclei (Z=26) E Fe, max >~10 20 eV E p, max ~ eV protons if B s ~1  G HOWEVER Mach no.

nuclei from cluster accretion shocks as UHECRs heavy nuclei E max for B s ~1  G E Fe, max ~10 20 eV Inoue, Sigl, Miniati & Armengaud, PRL submitted (astro-ph/ ) Hubble escape limit t esc ~R 2 /5  (E) E max /Z~7x10 18 eV acceleration vs CMB losses, lifetime E max R s ~3.2 Mpc V s ~2200 km/s t acc =(20/3) r g c/V s 2 shock radius, velocity, etc. Bohm limit shock accel. time

UHECRs as nuclei from clusters with EGMF no EGMF spectrum composition anisotropy eV10 20 eV f CR ~ f CR ~0.002 SI, Sigl, Miniati, Armengaud PRL, submitted (astro-ph/ ) consistent with current data (spectrum <2 sigma) with some heavy enhancement clear predictions for Auger, Telescope Array, JEM-EUSO… 100 events>4x10 19 eV 1000 events>4x10 19 eV

latest Auger results composition Unger+ arXiv: mixed composition at all E becoming heavier at highest E?

UHE proton-induced hard X+  emission from clusters Suzaku? NeXT, Simbol-X, NuSTAR HESS, MAGIC, CANG.3, VERITAS… SI, Aharonian, Sugiyama 05 Coma D=100 Mpc p(10 19 eV) +  CMB → p+ e + e - (10 16 eV) e + e - +B(~  G) → keV, e + e - +  CMB → TeV

summary cluster accretion shocks (nuclei) characteristic spectra, anisotropy, composition hard X-rays + TeV gamma-rays AGNs GRBs tight energy budget characteristic GeV-TeV signatures consistent for some enhancement in heavy composition other sources? starburst galaxies … Galactic NS, magnetars … none of these? different likelihood for different types high-power RG > low-power RG > radio-quiet

concluding haiku 「松島や ああ松島や 松島や」 松尾芭蕉(?) “Matsushima, ah Matsushima, Matsushima.” - Matsuo Basho (?) 宇宙線 ああガンマ線 ニュートリノ “Cosmic rays, ah Gamma-rays, Neutrinos.” The real beauty will be in the combination of the techniques!