Lithium Surface Experiments on the Current Drive Experiment-Upgrade R. Kaita Princeton Plasma Physics Laboratory National Spherical Torus Experiment Program.

Slides:



Advertisements
Similar presentations
Implications of tritium burn fraction on fuel cycle Dai-Kai Sze, UCSD FNST Meeting August 18-20, 2009 UCLA, LA, Ca.
Advertisements

Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
Complex chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite PFC surfaces C.N. Taylor1, B. Heim1, J.P. Allain1, C. H. Skinner2,
APS-DPP October Denver, Colorado CDX-U Final results from the CDX-U lithium program R. Majeski, R. Kaita, H. Kugel, T. Gray, D. Mansfield, J. Spaleta,
PPPL Experiment Seminar Wednesday, February 21, 2001 Li capillary porous system on T-11M Gettering of Deuterium and He Deuterium retention in Li limiter.
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, M.G. Bell 2, T.R. Jarboe 1, B.A. Nelson 1, D.Mueller 2, R. Maqueda 3, R. Kaita 2,
SFG meeting 18 May 2005 CDX-U Recent Lithium Evaporative Coating and Electron Beam Heating Results in CDX-U Presented by Dick Majeski R. Kaita, T. Gray,
ISTW October Chengdu CDX-U The Lithium Tokamak – Results from CDX-U and Progress towards LTX R. Kaita, H. Kugel, T. Gray, D. Mansfield, J. Spaleta,
ASIPP Lithium experiments on HT-7 and EAST tokamak G. Z. Zuo, J. S. Hu, Z.S, J. G. Li, EAST team Institute of Plasma Physics, Chinese Academy of Sciences,
V. A. Soukhanovskii (LLNL) Acknowledgements: J. Abramson, R. E. Bell, A. L. Roquemore, R. Kaita, H. W. Kugel, G. Tchilinguirian, P. Sichta, G. Zimmer (PPPL),
V. A. SOUKHANOVSKII, POSTER EX/P4-22, 22 ND IAEA FEC, OCTOBER 2008, GENEVA, SWITZERLAND 1 of 22 Divertor Heat Flux Mitigation in High- Performance.
1 THERMAL LOADING OF A DIRECT DRIVE TARGET IN RAREFIED GAS B. R. Christensen, A. R. Raffray, and M. S. Tillack Mechanical and Aerospace Engineering Department.
Nov 13-14, 2001 A. R. Raffray, et al., Progress Report on Chamber Clearing Code Effort 1 Progress Report on Chamber Clearing Code Development Effort A.
PWF 3/01 Plasma Fueling Program1 Pumping Systems for ITER, FIRE and ARIES P. W. Fisher Oak Ridge National Laboratory C. A. Foster Cryogenic Applications.
No Li No Li 47 mg 5 mg/s 10 mg/s.
Locations Bay H top & bottom, 7 cm ‘behind’ 7 cm wide gap in outer divertor tiles Bay I midplane 10 cm outboard of limiter, data accumulated continuously.
PFC meeting 9-11 May 2005 PPPL CDX-U E-beam experiments on CDX-U Presented by Dick Majeski R. Kaita, T. Gray, H. Kugel, J. Spaleta, J. Timberlake, L. Zakharov.
Tokamak GOLEM (for fusion education) Tokamak GOLEM just in operation (plasma in the chamber) major radius R = 0.4 m plasma current < 10 kA toroidal magnetic.
V. A. Soukhanovskii Lawrence Livermore National Laboratory, Livermore, CA Acknowledgements: R. Kaita a, A. L. Roquemore a, K. Tritz b a Princeton Plasma.
1 Electron Bernstein Wave Research and Plans Gary Taylor Presentation to the 16th NSTX Program Advisory Committee September 9, 2004.
HWK NSTX PAC19, Feb , Reduced Recycling from Lithium Coatings: Recent Results and Future Plans Supported by Office of Science Culham Sci Ctr.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
pkm- NCSX CDR, 5/21-23/ Power and Particle Handling in NCSX Peter Mioduszewski 1 for the NCSX Boundary Group: for the NCSX Boundary Group: M. Fenstermacher.
ASIPP Development of a new liquid lithium limiter with a re-filling system in HT-7 G. Z. Zuo, J. S. Hu, Z.S, J. G. Li,HT-7 team July 19-20, 2011 Institute.
NSTX Supported by College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
1Physics Operators Course, PCS Navigation, D.J. Battaglia, September 15, 2015 Devon Battaglia, Keith Erickson, Dennis Mueller, Stefan Gerhardt, Roger Raman,
Demonstration of 200 kA CHI Startup Current Coupling to Transformer Drive on NSTX B.A. Nelson, R. Raman, T.R. Jarboe, University of Washington D. Mueller,
T.M. Biewer, Oct. 20 th, 2003NSTX Physics Meeting1 T. M. Biewer, R.E. Bell October 20 th, 2003 NSTX Physics Meeting Princeton Plasma Physics Laboratory.
H. W. Kugel 45 th APS DPP Meeting Oct 27-31, 2003, Albuquerque, NM 1 Lithium Experiments in the NSTX Boundary Physics Program H.W.Kugel, M.Bell, R.Kaita,
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
1/9 Session III-B Special Liquid Lithium Technology Session Summary C. H. Skinner, session chair Princeton Plasma Physics Laboratory 2 nd International.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
Supported by Imaging the Pedestal Island Structure during the Application of 3D Magnetic Perturbations Office of Science D.J. Battaglia 1*, M.W. Shafer.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
Li collection experiments on T-11M and T-10 in framework of Li closed loop concept S.V.Mirnov1, A.G.Alekseev1, A.M.Belov1, N.T.Djigailo1, A.N.Kostina2,
Edge characterization experiments in the National Spherical Torus Experiment V. A. Soukhanovskii and NSTX Research Team Session CO1 - NSTX ORAL session,
Session I-B – Overview Talks Lithium in Magnetic Confinement Experiments S. MirnovLi collection experiments on T-11M and T-10 in framework of Li closed.
5.5 inch 8 inch 6 inch V = m/s Freq = Hz Independent Control:
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
Lithium Research in NSTX Josh Kallman (with thanks to R. Kaita) Student Seminar PPPL July 29, 2010 NSTX College W&M Colorado Sch Mines Columbia U CompX.
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
NCSX NCSX CDR May 21-23, 2002 H.W. Kugel Slide 1 Conceptual Design for NCSX Auxiliary Systems Heating, Fueling,Wall Conditioning and Vacuum Systems.
ASIPP HT-7 Behaviors of Impurity and Hydrogen Recycling on the HT-7 Tokamak J. Huang*, B.N. Wan, X.Z. Gong, Z.W. Wu and the HT-7 Team Institute of Plasma.
1 Progress in Spherical Torus Research Roger Raman University of Washington, Seattle and the NSTX National Research Team ICC Workshop May 2003, Seattle,
GOLEM operation based on some results from CASTOR
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
1Field-Aligned SOL Losses of HHFW Power and RF Rectification in the Divertor of NSTX, R. Perkins, 11/05/2015 R. J. Perkins 1, J. C. Hosea 1, M. A. Jaworski.
V. A. Soukhanovskii Lawrence Livermore National Laboratory H. W. Kugel, R. Kaita, A. L. Roquemore Princeton Plasma Physics Laboratory NSTX Research Team.
With: R. Bell, D. Boyle, R. Kaita, T. Kozub, B. LeBlanc, M. Lucia, E. Merino, J. Schmitt, D. Stotler, G. Tchilingurian PPPL T. M. Biewer, T. K. Gray ORNL.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Solenoid-free Plasma Start-up in NSTX using Transient CHI Office of Science 22 nd IAEA Fusion Energy Conference October 13-18, 2008, Geneva College W&M.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Scaling of impurity (Ne & Ar) transport in beam heated NSTX H-mode discharges L. F. Delgado-Aparicio, D. Stutman, K. Tritz, and M. Finkenthal The Johns.
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
Supported by US DOE contracts DE-AC02-09CH11466 Dick Majeski Princeton Plasma Physics Lab with H. Ji, T. Kozub, A. Khodak, E. Merino, M. Zarnstorff Concepts.
NSTX APS-DPP: SD/SMKNov Abstract The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and.
56 th Annual Meeting of the Division of Plasma Physics. October 27-31, New Orleans, LA Using the single reservoir model [3], shown on right, to:
1 Edge Characterization Experiment in High Performance (highly shaped) Plasmas R. J. Maqueda (Nova Photonics) R. Maingi (ORNL) V. Soukhanovskii (LLNL)
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
For the NSTX Five-Year Research Program 2009 – 2013 M.G. Bell Facility and Diagnostic Plans.
SPES Target Group Data…… INFN-CISAS-CNR collaboration The Ablation Ion Source for refractory metal ion beams A preliminary design.
Presentation transcript:

Lithium Surface Experiments on the Current Drive Experiment-Upgrade R. Kaita Princeton Plasma Physics Laboratory National Spherical Torus Experiment Program Advisory Committee 16th Meeting Princeton, NJ 9-10 September 2004

Contributors Work performed under USDOE Contract DE-AC02-76-CH03073 R. Majeski, a M. Boaz, a P. Efthimion, a G. Gettelfinger, a T. Gray, a D. Hoffman, a S. Jardin, a H. Kugel, a P. Marfuta, a T. Munsat, a C. Neumeyer, a S. Raftopoulos, a T. Rognlien, b V. Soukhanovskii, b J. Spaleta, a G. Taylor, a J. Timberlake, a R. Woolley, a L. Zakharov, a M. Finkenthal, c D. Stutman, c L. Delgado-Aparicio, c R. P. Seraydarian, d G. Antar, d R. Doerner, d S. Luckhardt, d M. Baldwin, d R. W. Conn, d R. Maingi, e M. Menon, e R. Causey, f D. Buchenauer, f B. Jones, f M. Ulrickson, f J. Brooks, g D. Rodgers h a Princeton Plasma Physics Laboratory, Princeton, NJ b Lawrence Livermore National Laboratory, Livermore, CA c Johns Hopkins University, Baltimore, MD d University of California at San Diego, La Jolla, CA e Oak Ridge National Laboratory, Oak Ridge, TN f Sandia National Laboratories, Albuquerque, NM g Argonne National Laboratories, Argonne, IL h Drexel University, Philadelphia, PA

CDX-U goal - develop liquid lithium technology for fusion and study its interactions with plasmas  1.6 B T (0)2.2 kG I P  80 kA P rf <200 kW  disch <25 msec T e (0)100 eV n e (0)6x10 19 m -3 R 0 34 cm a22 cm A=R 0 /a  1.5 UCSD liquid lithium rail limiter 2000 cm 2 30 cm 2 CDX-U experiments support NSTX because of the potential of liquid lithium to address its power and particle handling needs

Safe handling and mechanical stability of liquid lithium shown in tray loading and plasma operations  Argon glow discharge cleaning and tray heating removed surface coatings  Lithium remains in tray with currents to ground ≈100A at B p ≈0.1T for ≈10ms Empty limiter with heater leads and heat shields Liquid lithium in tray after ~40 discharges. Liquid lithium in tray limiter  34 cm major radius, 10 cm wide, 0.64 cm deep  Two halves with toroidal break  Heaters for T max ≈500 o C

Particle pumping capability of liquid lithium shown by higher gas puffing needed to sustain density Liquid lithium limiter increases fueling requirement by 5-8x Time (sec) Prefill only Discharge particle inventory  n e > (10 12 cm -3 ) Discharge particle inventory Time (sec)  n e > (10 12 cm -3 ) With LithiumNo Lithium

 Visible emission from view of center stack indicates strong reduction in global D  with liquid lithium limiter Bare SS tray Liquid lithium Plasma Current (kA) With Lithium No Lithium Ability of liquid lithium to pump deuterium supported by reduced D  emission

Impurity control with liquid lithium indicated by reduction of oxygen emission Plasma Current (kA) OII Emission (arb. units) With Lithium No Lithium Many conditioning shots required with empty limiter tray before currents ≈60kA were achieved No conditioning shots required with liquid lithium limiter tray to achieve currents > 60kA

Low Z eff with liquid lithium limiter consistent with modeling based on CDX-U plasma parameters  Tokamak Simulation Code calculations constrained by experimental estimates of electron temperature, density, and loop voltage  Plasma resistivity with lithium limiter requires very low Z eff No lithium With Lithium No lithium With Lithium Z eff T e (0) Time (ms)

Improved plasma parameters with liquid lithium suggested by increase in ion temperature  Initial ion temperatures determined spectroscopically from C IV line broadening show increase in liquid lithium limiter plasmas  Ability of liquid lithium to reduce impurities requires measurements to be repeated with carbon pellet injection to compensate for low signal levels No Lithium 25 eV With Lithium 64 eV

Phased lithium implementation on NSTX begins with a static lithium divertor coating  Evaporator to be inserted between shots –Heat load during plasma liquefies lithium on divertor surfaces  Port covers and gate valves installed on upper and lower dome ports for retractable coating system –Retractable probe successfully tested with insertion of supersonic gas injector during FY04 NSTX operating period  CDX-U will test coating system in early FY2005 –Lithium evaporator undergoing tests in “off-line” chamber  Operation planned for FY06 NSTX run

Concept courtesy of C.Eberle, ORNL Next step is intended to address power handling and flowing liquid lithium technology issues  Module area ~ 1 m 2  Flow liquid lithium at ~7-12 m/s to avoid evaporation at full power  Decision on installation in FY08 requires following –Additional data from free liquid lithium surface CDX-U experiments –NSTX results with static lithium divertor coating –Liquid lithium jet results from Sandia National Laboratories –Free-surface liquid metal experiments and simulations at UCLA