Q8.1 A ball (mass 1.0 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse.

Slides:



Advertisements
Similar presentations
Journal 1/27/15 Momentum is the basic idea behind weapons like guns. What kind of defensive thing might we create using momentum or collisions? Objective.
Advertisements

Problem of the Day An 1800 kg car stopped at a traffic light is struck from the rear by a 900 kg car, and the two become entangled, moving along the same.
Momentum and Impulse.
Linear Momentum and Collisions
Q8.1 A ball (mass 0.40 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse.
25 pt. 5 pt. 10 pt. 15 pt. 20 pt. 25 pt. 5 pt. 10 pt. 15 pt. 20 pt. 25 pt. 5 pt. 10 pt. 15 pt. 20 pt. 25 pt. 5 pt. 10 pt. 15 pt. 20 pt. 25.
Collisions A B Conservation of Momentum A B During a collision, if the net external force on the system is zero, then the momentum of the system is constant.
1. Momentum: By Momentum, we mean “Inertia in Motion” or more specifically, the mass of an object multiplied by its velocity. Momentum = mass × velocity.
Conservation of Momentum
Center of Mass and Linear Momentum
Momentum and Energy in Collisions. A 2kg car moving at 10m/s strikes a 2kg car at rest. They stick together and move to the right at ___________m/s.
Aim: What is the law of conservation of momentum? Do Now: A 20 kg object traveling at 20 m/s stops in 6 s. What is the change in momentum? Δp = mΔv Δp.
A. Rolling in the Rain An open cart rolls along a frictionless track while it is raining. As it rolls, what happens to the speed of the cart as the rain.
AP Physics Review Ch 7 – Impulse and Momentum
Chapter 7 Impulse and Momentum.
Chapter 4 Impulse and Momentum.
Momentum Momentum is a vector quantity since velocity is a vector.
AP Physics I.D Impulse and Momentum. 7.1 Impulse-Momentum Theorem.
Momentum and Impulse Review 1.The velocity of a moving mass is called? ans: momentum 2.Force applied in a period of time is called? ans: impulse 3. The.
Collisions basically include every interaction § 8.3–8.4.
1 1) speeds up 2) maintains constant speed 3) slows down 4) stops immediately An open cart rolls along a frictionless track while it is raining. As it.
Momentum, Impulse, and Collisions
CHAPTER 7 MOMENTUM AND COLLISIONS
Momentum and Collisions
Chapter 6 Momentum and Impulse
Momentum and Its Conservation LEQ: What is Momentum?
Chapter 6 Momentum and Impulse. Momentum The product of an object’s mass and velocity: p = mv Momentum, p, and velocity, v, are vector quantities, meaning.
Momentum A measure of how difficult it is to change an object’s motion (to make it stop or swerve). On what does this difficulty depend? –More mass; more.
Reading Quiz - Momentum
MOMENTUM the product of mass and velocity Units are kgm/s, or any mass velocity combo Example: Which has more momentum, a 8000-kg hippo trotting at 1.5.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 7 Impulse and Momentum.
MOMENTUM AND COLLISIONS. Momentum is the product of the mass and velocity of a body. Momentum is a vector quantity that has the same direction as the.
Momentum Ms. Li Momentum is a commonly used term in sports. A team that has the momentum is on the move and is going to take some effort to stop. A team.
Momentum and Impulse. March 24, 2009 Momentum and Momentum Conservation  Momentum  Impulse  Conservation of Momentum  Collision in 1-D  Collision.
We will be playing Jeopardy today! Please come up with a team name and write it on the board above your team number.
Impulse, Momentum and Collisions. momentum = mass x velocity p = mv units: kgm/s or Ns.
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant.
The momentum of an object is the product of that object’s mass and velocity. Therefore a large oil tanker (big m, small v) and moving bullet (small m,
Chapter 6 Momentum and Collisions 6-1 Momentum and Impulse Momentum(p) describes the tendency of an object to continue moving (or not moving) at a constant.
Chapter 7 Impulse and Momentum. You are stranded in the middle of an ice covered pond. The ice is frictionless. How will you get off?
1. What is the difference in elastic and inelastic collisions?
Momentum and Its Conservation Review. Momentum is a ___ quantity scalar 2.vector
Chapter 9 Momentum Is equal to the mass of an object times the velocity of an object Has the symbol “p” so p= m v - measured in kgm/s - It is a vector.
Would you rather be hit by a tennis ball or a bowling ball?
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
From a Consumer Reports article on Crash Tests of Cars… …..The tests don’t say what happens when a small car impacts a big car. Physics dictates that.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Momentum and Impulse Chapter 6 Linear Momentum Momentum.
Impulse and Momentum. Terminology Impulse: FΔt, or the product of the average force on object and the time interval over which it acts (measures in Newton-seconds)
Chapter 7 Impulse and Momentum. 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant.
1. What is the difference in elastic and inelastic collisions?
Momentum The property of moving object has that makes it difficult to stop. (technically, product of mass and velocity) Formula: p = mv.
Momentum & Impulse For clickers.
Chapter 7 Impulse and Momentum.
Momentum Objectives: Momentum and Newton’s Second Law
Name 3 vectors and 3 scalars.
Welcome Physics Pick up the two handouts at the front
What is Momentum? Unit 8 Section 3
7. Momentum and impulse Momentum:
THIS IS JEOPARDY.
Chapter 7 Impulse and Momentum.
PHYSICS 103: Lecture 13 Review of HW Momentum Agenda for Today:
Collisions A B. Collisions A B Conservation of Momentum B During a collision, if the net external force on the system is zero, then the momentum of.
Center of Mass & Linear Momentum
As we watch this video….. think about these questions:
Chapter 7 Impulse and Momentum.
Chapter 7 Impulse and Momentum.
Unit 7 &.
Formative Assessment.
Presentation transcript:

Q8.1 A ball (mass 1.0 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse of the net force on the ball during its collision with the wall? 1. 50 kg • m/s to the right 2. 50 kg • m/s to the left 3. 10 kg • m/s to the right 4. 10 kg • m/s to the left 5. none of the above

A8.1 A ball (mass 1.0 kg) is initially moving to the left at 30 m/s. After hitting the wall, the ball is moving to the right at 20 m/s. What is the impulse of the net force on the ball during its collision with the wall? 1. 50 kg • m/s to the right 2. 50 kg • m/s to the left 3. 10 kg • m/s to the right 4. 10 kg • m/s to the left 5. none of the above

Q8.2 You are testing a new car (which has only crash test dummies on board). Consider two ways to slow the car from a speed of 90 km/h (56 mi/h) to a complete stop: (i) You let the car slam into a wall, bringing it to a sudden stop. (ii) You let the car plow into a giant tub of gelatin so that it comes to a gradual halt. In which case is there a greater impulse of the net force on the car? 1. in case (i) 2. in case (ii) 3. the impulse is the same in both cases 4. not enough information given to decide

A8.2 You are testing a new car (which has only crash test dummies on board). Consider two ways to slow the car from a speed of 90 km/h (56 mi/h) to a complete stop: (i) You let the car slam into a wall, bringing it to a sudden stop. (ii) You let the car plow into a giant tub of gelatin so that it comes to a gradual halt. In which case is there a greater impulse of the net force on the car? 1. in case (i) 2. in case (ii) 3. the impulse is the same in both cases 4. not enough information given to decide

Q8.3 A 3.00-kg rifle fires a 5.00-g bullet at a speed of 300 m/s. Which force is greater in magnitude: (i) the force that the rifle exerts on the bullet; or (ii) the force that the bullet exerts on the rifle? 1. the force that the rifle exerts on the bullet 2. the force that the bullet exerts on the rifle 3. both forces have the same magnitude 4. not enough information given to decide

A8.3 A 3.00-kg rifle fires a 5.00-g bullet at a speed of 300 m/s. Which force is greater in magnitude: (i) the force that the rifle exerts on the bullet; or (ii) the force that the bullet exerts on the rifle? 1. the force that the rifle exerts on the bullet 2. the force that the bullet exerts on the rifle 3. both forces have the same magnitude 4. not enough information given to decide

Q8.4 Two objects with different masses collide and stick to each other. Compared to before the collision, the system of two gliders after the collision has 1. the same total momentum and the same total kinetic energy 2. the same total momentum but less total kinetic energy 3. less total momentum but the same total kinetic energy 4. less total momentum and less total kinetic energy 5. not enough information given to decide

A8.4 Two objects with different masses collide and stick to each other. Compared to before the collision, the system of two gliders after the collision has 1. the same total momentum and the same total kinetic energy 2. the same total momentum but less total kinetic energy 3. less total momentum but the same total kinetic energy 4. less total momentum and less total kinetic energy 5. not enough information given to decide

Q8.5 Two objects with different masses collide and bounce off each other. Compared to before the collision, the system of two gliders after the collision has 1. the same total momentum and the same total kinetic energy 2. the same total momentum but less total kinetic energy 3. less total momentum but the same total kinetic energy 4. less total momentum and less total kinetic energy 5. not enough information given to decide

A8.5 Two objects with different masses collide and bounce off each other. Compared to before the collision, the system of two gliders after the collision has 1. the same total momentum and the same total kinetic energy 2. the same total momentum but less total kinetic energy 3. less total momentum but the same total kinetic energy 4. less total momentum and less total kinetic energy 5. not enough information given to decide

Q8.6 A yellow object and a red object are joined together. Each object is of uniform density. The center of mass of the combined object is at the position shown by the green “X.” Which object has the greater mass, the yellow object or the red object? 1. the yellow object 2. the red object 3. they both have the same mass 4. not enough information given to decide

A8.6 A yellow object and a red object are joined together. Each object is of uniform density. The center of mass of the combined object is at the position shown by the green “X.” Which object has the greater mass, the yellow object or the red object? 1. the yellow object 2. the red object 3. they both have the same mass 4. not enough information given to decide