Wi-Fi Wireless Communications Sheldon Lou. What is Wi-Fi? The standard for wireless local area networks (WLANs). It’s like a common language that all.

Slides:



Advertisements
Similar presentations
Wireless Communications Sheldon Lou
Advertisements

Networks: Wireless LANs1 Wireless Local Area Networks.
Chapter - 11 CWNA Certified Wireless Network Administrator Introduction to Wireless LANs.
© Kemal AkkayaWireless & Network Security 1 Department of Computer Science Southern Illinois University Carbondale CS591 – Wireless & Network Security.
Comp 361, Spring 20056:Basic Wireless 1 Chapter 6: Basic Wireless (last updated 02/05/05) r A quick intro to CDMA r Basic
Wireless Networks and Spread Spectrum Technologies.
Wireless Fundamentals Chapter 6 Introducing Wireless Regulation Bodies, Standards, and Certifications.
Wireless networking technology By Abbas Izadpanah January 2007.
University of Calgary – CPSC 441
IEEE b Wireless LANs Carey Williamson Department of Computer Science University of Calgary.
Wireless Local Area Networks By Edmund Gean August 2, 2000.
Network Technology CSE Network Technology CSE3020 Week 9.
CPET 260 – Network I Wireless Networks Bluetooth.
20 – Collision Avoidance, : Wireless and Mobile Networks6-1.
Networks: Wireless LANs1 Wireless Local Area Networks.
6: Wireless and Mobile Networks6-1 Chapter 6: Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone.
IEEE b Wireless LANs Carey Williamson Department of Computer Science University of Calgary.
5-1 Data Link Layer r What is Data Link Layer? r Wireless Networks m Wi-Fi (Wireless LAN) r Comparison with Ethernet.
Wi-Fi Wireless Communications Sheldon Lou. What is Wi-Fi? The standard for wireless local area networks (WLANs). It’s like a common language that all.
WLAN b a Johan Montelius
Networks Olga Agnew Bryant Likes Daewon Seo.
Wireless LAN Technology. WIRELESS LAN TECHNOLOGY SPREAD SPECTRUM LAN Configuration Except for quite small offices, a spread spectrum wireless LAN makes.
6: Wireless and Mobile Networks6-1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may.
Network Security Wireless LAN. Network Security About WLAN  IEEE standard  Use wireless transmission medium such as radio, microwave, infrared.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 6 Wireless, WiFi and mobility.
Chapter 5 outline 5.1 Introduction and services
ECE 4450:427/527 - Computer Networks Spring 2015
Wireless LANs Ethernet and all its enhancements is the major wired LAN architecture today Beyond Ethernet, the fastest growing LAN architecture is wireless.
Wi-Fi Wireless LANs Dr. Adil Yousif. What is a Wireless LAN  A wireless local area network(LAN) is a flexible data communications system implemented.
CECS 474 Computer Network Interoperability Notes for Douglas E. Comer, Computer Networks and Internets (5 th Edition) Tracy Bradley Maples, Ph.D. Computer.
2/12/20021 IEEE Wireless Local Area Networks The future is wireless Presented by Tamer Khattab and George Wong Prepared for EECE571N - Advanced.
Lecture #2 Chapter 14 Wireless LANs.
Copyright © 2007 Heathkit Company, Inc. All Rights Reserved PC Fundamentals Presentation 50 – The Wireless LAN.
Overview of Wireless LANs Use wireless transmission medium Issues of high prices, low data rates, occupational safety concerns, & licensing requirements.
Communication Research Labs Sweden AB Introduction to Wireless communication and WLAN.
Chapter 8 Connecting Wirelessly
Sybex CCNA Chapter 12: Wireless Networks.
Instructor: Dr. Mustafa Shakir
14.1 Chapter 14 Wireless LANs Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
OV Copyright © 2013 Logical Operations, Inc. All rights reserved. Network Implementations  Ethernet Networks  Wireless Networks.
The University of Bolton School of Business & Creative Technologies Wireless Networks Introduction 1.
Guided by: Jenela Prajapati Presented by: (08bec039) Nikhlesh khatra.
K. Salah 1 Chapter 15 Wireless LANs. K. Salah 2 Figure 15.1 BSSs IEEE Specification for Wireless LAN: IEEE , which covers the physical and data.
Presented by Hampton Smith  An IEEE (Institute for Electrical and Electronics Engineers) protocol ratified in 1997 which defines a standard.
A PRESENTATION ON “Wireless Networks”
Data and Computer Communications Ninth Edition by William Stallings Chapter 17 – Wireless LANs.
Wireless and Mobility The term wireless is normally used to refer to any type of electrical or electronic operation which is accomplished without the use.
Architecture of an infrastructure network Distribution System Portal 802.x LAN Access Point LAN BSS LAN BSS 1 Access Point STA.
Ryan Heaton Dick Al-Bayaty Wi-Fi How Wireless Communication works.
Lecture # 13 Computer Communication & Networks. Today’s Menu ↗Last Lecture Review ↗Wireless LANs ↗Introduction ↗Flavors of Wireless LANs ↗CSMA/CA Wireless.
Chapter 6 Medium Access Control Protocols and Local Area Networks Wireless LAN.
Universität Karlsruhe Institut für Telematik ECE 591
Wireless Networks Standards and Protocols & x Standards and x refers to a family of specifications developed by the IEEE for.
WLAN.
CO5023 Wireless Networks. Varieties of wireless network Wireless LANs: the main topic for this week. Consists of making a single-hop connection to an.
Wireless Protocols. 2 Outline MACA 3 ISM: Industry, Science, Medicine unlicensed frequency spectrum: 900Mhz, 2.4Ghz, 5.1Ghz, 5.7Ghz.
CSCI 465 D ata Communications and Networks Lecture 23 Martin van Bommel CSCI 465 Data Communications & Networks 1.
1 Chapter 4 MAC Layer – Wireless LAN Jonathan C.L. Liu, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida.
7 - 1 Session 7 Wireless Security Wireless LANs (WLANs) Use radio or infrared frequencies to transmit signals through the air (instead of cables)
COMPUTER FUNDAMENTALS David Samuel Bhatti
Wireless LAN Requirements (1) Same as any LAN – High capacity, short distances, full connectivity, broadcast capability Throughput: – efficient use wireless.
COMP2322 Lab 1 Introduction to Wireless LAN Weichao Li Apr. 8, 2016.
IEEE Wireless LAN Standard
Outline What is Wireless LAN Wireless Transmission Types
Wireless LANs Wireless proliferating rapidly.
CS 457 – Lecture 7 Wireless Networks
Chapter 6 Medium Access Control Protocols and Local Area Networks
Wireless LAN (WLAN) Wireless Ethernet Bluetooth.
Conducted and Wireless Media (Part II)
IEEE Wireless Local Area Networks (RF-LANs)
Presentation transcript:

Wi-Fi Wireless Communications Sheldon Lou

What is Wi-Fi? The standard for wireless local area networks (WLANs). It’s like a common language that all the devices use to communicate to each other. If you have a standard, people can make all sorts of devices that can work with each other. It’s actually IEEE , a family of standards. The IEEE (Eye-triple-E, Institute of Electrical and Electronics Engineers Inc.) is a non-profit, technical professional association of more than 360,000 individual members in approximately 175 countries. The Wireless Ethernet Compatibility Alliance started the Wi-Fi--wireless fidelity--certification program to ensure that equipment claiming compliance was genuinely interoperable.

US Frequency Bands BandFrequency range UHF ISM MHz S-Band 2-4 GHz S-Band ISM GHz C-Band 4-8 GHz C-Band satellite downlink GHz C-Band Radar (weather) GHz C-Band ISM GHz C-Band satellite uplink GHz X-Band8-12 GHz X-Band Radar (police/weather) GHz

Wi-Fi Standards Standard Speed Freq band Notes Mbps 2.4 GHz (1997) a 54 Mbps 5 GHz (1999) b 11 Mbps 2.4 GHz g 54 Mbps 2.4 GHz

ISM Band ISM stands for industrial, scientific, and medical. ISM bands are set aside for equipment that is related to industrial or scientific processes or is used by medical equipment. Perhaps the most familiar ISM-band device is the microwave oven, which operates in the 2.4-GHz ISM band. The ISM bands are license-free, provided that devices are low-power. You don't need a license to set up and operate a wireless network.

Wireless LAN Networks

WLAN Architecture—Ad Hoc Mode Ad-Hoc mode: Peer-to-peer setup where clients can connect to each other directly. Generally not used for business networks.

Ad Hoc Structure Mobile stations communicate to each other directly. It’s set up for a special purpose and for a short period of time. For example, the participants of a meeting in a conference room may create an ad hoc network at the beginning of the meeting and dissolve it when the meeting ends.

WLAN Architecture--Mesh Mesh: Every client in the network also acts as an access or relay point, creating a “self- healing” and (in theory) infinitely extensible network.  Not yet in widespread use, unlikely to be in homes.

WLAN Architecture—Infrastructure Mode To Wired Network

Infrastructure network There is an Access Point (AP), which becomes the hub of a “star topology.” Any communication has to go through AP. If a Mobile Station (MS), like a computer, a PDA, or a phone, wants to communicate with another MS, it needs to send the information to AP first, then AP sends it to the destination MS Multiple APs can be connected together and handle a large number of clients. Used by the majority of WLANs in homes and businesses.

Comparison of Two Structures Infrastructure Ad hoc ExpansionX FlexibilityX ControlX RoutingX CoverageX ReliabilityX

Extended Service Area

Roaming In an extended service area, a mobile station (MS) can roam from one BSS (Basic Service Set) to another. Roughly speaking, the MS keeps checking the beacon signal sent by each AP and select the strongest one and connect to that AP. If the BSSs overlap, the connection will not be interrupted when an MS moves from one set to another. If not, the service will be interrupted. Two BSSs coverage areas can largely overlap to increase the capacity for a particular area. If so, the two access points will use different channels, as we will explain later.

Antennas All WLAN equipment comes with a built-in omni-directional antenna, but some select products will let you attach secondary antennas that will significantly boost range.

Antennas, continued Antennas come in all shapes and styles:  Omni-directional: Vertical Whip Ceiling mount  Directional: Yagi (“Pringles can”) Wall mounted panel Parabolic dish

How Can Several Users Communicate Simultaneously? As we have discussed, there is a difference between a network designed for voice conversation and one for data exchange.  For voice conversations, like telephone and cell phone calls, each person has a dedicated channel during the entire conversation. (3G and 4G cell phones are somewhat different, as we will explain later.)  For data exchange, many users can share one channel. A user sends information when no one else is sending.  New technologies try to accommodate both voice and data transmissions, as we will discuss in this course.

Share one channel in data communication In data communication, data are grouped into packets/frames. Each packet/frame contains a number of bits of information. Devices (phones, computers, etc.) don’t communicate simultaneously. It’s like they are sharing one single cable (the air in this case), only one person can use it at one time. Before an MS (mobile station) sends its packets, it checks to see if someone else is sending information. Only when the medium is free can an MS sends packets. If some station is sending or receiving signal, the MS that intends to send will generate a random waiting time and wait for its turn. If several MSs are all waiting for their turns, since their waiting times are randomly generated and thus not equal, they will not start sending simultaneously. Thus collision (two or more MSs sending signals simultaneously) is avoided. It’s called Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA).

How does CSMA/CA (Carrier Sensing Multiple Access with Collision Avoidance) Work? (p. 189, Example 4.18)

RTS/CTS (Request-to-send/clear-to-send) Use Request-to-send/clear-to-send (RTS/CTS) mechanism (p , Fig & p. 462, Fig ) to avoid collision when two MSs cannot hear each other (blocked by a wall …). A terminal ready for transmission sends an RTS packet identifying the source address, destination address, and the length of the data to be sent. The destination station responds with CTS packet. The source terminal receives the CTS and sends the data. Other terminals go to the virtual carrier-sensing mode (NAV signal on), therefore the source terminal sends its packet with no contention. After completion of the transmission, the destination station sends an ACK, opening contention for other users.

Spread spectrum in It is a requirement imposed by the regulatory authorities for devices in ISM band in order to reduce interference. There is also limitations on transmitted power. We discuss two methods specified in , FHSS and DSSS.

DSSS in Used by b Symbol transmission rate = 1Mbps Multipath spread of up to 1/1 Mbps = 1 µs does not cause ISI. For indoor applications this ensures that the system does not suffer from ISI. Chip rate = 11 Mcps Resolution is on the order of 1/11 Mcps = 90 ns. Use Barker code (Example 3.16, p. 116).

Complementary code keying (CCK) Used to increase the data rate to 11 Mbps Example 17, p. 119 Sec , p. 457

Frequency Hopping in The frequency can hop over 78 hopping channels each separated by 1 MHz. The first channel, Channel 0, starts at GHz. Channel 1 is at GHz, Channel 2, GHz, and so on up to Channel 77 at GHz (US, Canada, and Europe standards). These frequencies are divided into three patterns of 26 hops each corresponding channel numbers (0, 3, 6, 9, …, 75), (1, 4, 7, 10, …, 76), (2, 5, 8, 11, …, 77), see p. 454, Fig Three APs can coexist without any hop collision, that results in a threefold increase in the capacity of the cell. Hop rate = 2.5 hops per second.

Frequency bands for DSSS FHSS uses 1 MHz bandwidth (narrowband), but the center frequency hops over 76 MHz. DSSS uses a chip rate of 11 Mcps which occupies around 26 MHz of bandwidth (wideband). The ISM band at 2.4 GHz is divided into 11 overlapping channels spaced by 5 MHz (see Fig. 11.6, P. 455). APs located close to each other can choose different channels to mitigate interference. The coverage areas of two access points (Basic Service Sets, BSS) may overlap to increase capacity. For example, up to 8 users can use VoIP simultaneously through one access point. With two overlapping APs, 16 users can talk simultaneously. But the two APs have to use non-overlapping channels.

Modulation Gaussian frequency shift keying (GFSK) is used (Sec , p. 97).

Wi-Fi network services Distribution and integration Association, re-association, and disassociation Authentication and deauthentication Providing privacy

Distribution This service is used by mobile stations in an infrastructure network every time they send data. Once a frame has been accepted by an access point, it uses the distribution service to deliver the frame to its destination. Any communication that uses an access point travels through the distribution service, including communications between two mobile stations associated with the same access point.

Integration Integration is a service provided by the distribution system; it allows the connection of the distribution system to a non-IEEE network. The integration function is specific to the distribution system used and therefore is not specified by , except in terms of the services it must offer.

Association Delivery of frames to mobile stations is made possible because mobile stations register, or associate, with access points. The distribution system can then use the registration information to determine which access point to use for any mobile station.

Reassociation When a mobile station moves between basic service areas within a single extended service area, it must evaluate signal strength and perhaps switch the access point with which it is associated. Reassociations are initiated by mobile stations when signal conditions indicate that a different association would be beneficial; they are never initiated by the access point. After the reassociation is complete, the distribution system updates its location records to reflect the reachability of the mobile station through a different access point.

Disassociation To terminate an existing association, stations may use the disassociation service. When stations invoke the disassociation service, any mobility data stored in the distribution system is removed. Once disassociation is complete, it is as if the station is no longer attached to the network. Disassociation is a polite task to do during the station shutdown process. The MAC is, however, designed to accommodate stations that leave the network without formally disassociating.

Authetication/deauthentication Physical security is a major component of a wired LAN security solution. Wired network’s equipment can be locked inside offices. Wireless networks cannot offer the same level of physical security, however, and therefore must depend on additional authentication routines to ensure that users accessing the network are authorized to do so. Authentication is a necessary prerequisite to association because only authenticated users are authorized to use the network. (In practice, though, many access points are configured for "open-system" mode and will authenticate any station.) Deauthentication terminates an authenticated relationship. Because authentication is needed before network use is authorized, a side effect of deauthentication is termination of any current association.