Advanced Views: XML-Relational Storage and Datalog Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 8, 2005.

Slides:



Advertisements
Similar presentations
1 Datalog: Logic Instead of Algebra. 2 Datalog: Logic instead of Algebra Each relational-algebra operator can be mimicked by one or several Database Logic.
Advertisements

From the Calculus to the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 22, 2005.
Lecture 11: Datalog Tuesday, February 6, Outline Datalog syntax Examples Semantics: –Minimal model –Least fixpoint –They are equivalent Naive evaluation.
CPSC 504: Data Management Discussion on Chandra&Merlin 1977 Laks V.S. Lakshmanan Dept. of CS UBC.
1 CHAPTER 4 RELATIONAL ALGEBRA AND CALCULUS. 2 Introduction - We discuss here two mathematical formalisms which can be used as the basis for stating and.
D ATABASE S YSTEMS I R ELATIONAL A LGEBRA. 22 R ELATIONAL Q UERY L ANGUAGES Query languages (QL): Allow manipulation and retrieval of data from a database.
Answer Set Programming Overview Dr. Rogelio Dávila Pérez Profesor-Investigador División de Posgrado Universidad Autónoma de Guadalajara
F22H1 Logic and Proof Week 7 Clausal Form and Resolution.
Virtual Data Integration Helena Galhardas DEI IST (based on the slides of the course: CIS 550 – Database & Information Systems, Univ. Pennsylvania, Zachary.
Datalog and Data Integration Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 12, 2007 LSD Slides courtesy.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A Modified by Donghui Zhang.
1 Relational Algebra & Calculus. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 52 Database Systems I Relational Algebra.
By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental.
Constraint Logic Programming Ryan Kinworthy. Overview Introduction Logic Programming LP as a constraint programming language Constraint Logic Programming.
From the Calculus to the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 23, 2004.
Relational Algebra & Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 16, 2004 Some slide content.
Conjunctive Queries, Datalog, and Recursion Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems October 23, 2003 Some slide.
XML Views & Reasoning about Views Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 4, 2004 Some slide content.
CSE 636 Data Integration Datalog Rules / Programs / Negation Slides by Jeffrey D. Ullman.
Introduction to SQL, the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 16, 2003.
Search in the semantic domain. Some definitions atomic formula: smallest formula possible (no sub- formulas) literal: atomic formula or negation of an.
XML Views & Reasoning about Views Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 3, 2005 Some slide content.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A.
Relational Algebra & Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 21, 2004 Some slide content.
Recursive Views and Global Views Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 9, 2004 Some slide content.
Views: Alternate Data Representations Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 2, 2004 Some slide content.
XML –Query Languages, Extracting from Relational Databases ADVANCED DATABASES Khawaja Mohiuddin Assistant Professor Department of Computer Sciences Bahria.
1 Relational Algebra and Calculus Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Rutgers University Relational Algebra 198:541 Rutgers University.
Relational Algebra Chapter 4 - part I. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
Relational Algebra Wrap-up and Relational Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 11, 2003.
Deductive Databases Chapter 25
CSCD343- Introduction to databases- A. Vaisman1 Relational Algebra.
Relational Algebra, R. Ramakrishnan and J. Gehrke (with additions by Ch. Eick) 1 Relational Algebra.
XML-to-Relational Schema Mapping Algorithm ODTDMap Speaker: Artem Chebotko* Wayne State University Joint work with Mustafa Atay,
1 Relational Algebra and Calculus Chapter 4. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.
The Relational Model: Relational Calculus
Relational Algebra & Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 12, 2007 Some slide content.
1 Relational Algebra. 2 Relational Query Languages v Query languages: Allow manipulation and retrieval of data from a database. v Relational model supports.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Algebra.
Relational Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 17, 2007 Some slide content courtesy.
Datalog Inspired by the impedance mismatch in relational databases. Main expressive advantage: recursive queries. More convenient for analysis: papers.
1 Relational Algebra & Calculus Chapter 4, Part A (Relational Algebra)
1 Relational Algebra and Calculas Chapter 4, Part A.
1.1 CAS CS 460/660 Introduction to Database Systems Relational Algebra.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Xin Zhang.
1 Relational Algebra Chapter 4, Sections 4.1 – 4.2.
Chapter 5 Notes. P. 189: Sets, Bags, and Lists To understand the distinction between sets, bags, and lists, remember that a set has unordered elements,
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 4 Relational Algebra.
CSCD34-Data Management Systems - A. Vaisman1 Relational Algebra.
Database Management Systems, R. Ramakrishnan1 Relational Algebra Module 3, Lecture 1.
Views and XML/Relational Mappings Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems October 21, 2003.
1 CSE544 Monday April 26, Announcements Project Milestone –Due today Next paper: On the Unusual Effectiveness of Logic in Computer Science –Need.
From the Calculus to the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 19, 2007.
Lu Chaojun, SJTU 1 Extended Relational Algebra. Bag Semantics A relation (in SQL, at least) is really a bag (or multiset). –It may contain the same tuple.
1 CS122A: Introduction to Data Management Lecture #7 Relational Algebra I Instructor: Chen Li.
CS589 Principles of DB Systems Fall 2008 Lecture 4d: Recursive Datalog with Negation – What is the query answer defined to be? Lois Delcambre
Extensions of Datalog Wednesday, February 13, 2001.
Lecture 9: Query Complexity Tuesday, January 30, 2001.
Goal for this lecture Demonstrate how we can prove that one query language is more expressive than (i.e., “contained in” as described in the book) another.
Relational Calculus Zachary G. Ives November 15, 2018
Relational Algebra & Calculus
Views and XML Views of Relations
Datalog, View Unfolding, Recursion and Foundations of Integration
XML Views & Reasoning about Views
XML Views & Reasoning about Views
Logic Based Query Languages
Datalog Inspired by the impedance mismatch in relational databases.
Presentation transcript:

Advanced Views: XML-Relational Storage and Datalog Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 8, 2005 Some slide content courtesy of Susan Davidson, Dan Suciu, & Raghu Ramakrishnan

2 A View as a Translation between XML and Relations  Claim: XML can represent any data; relations can represent any data  So we should be able to store relations in XML, and vice-versa  You have the most-cited paper in this area (Shanmugasundaram et al), and there are many more (Fernandez et al., …)  Techniques already making it into commercial systems  XPERANTO at IBM Research, soon to be DB2 v9  SQL Server 2005 will have XQuery support; Oracle will also shortly have XQuery support  … Now you’ll know how it works!

3 Issues in Mapping Relational  XML  We know the following:  XML is a tree  XML is SEMI-structured  There’s some structured “stuff”  There is some unstructured “stuff”  Issues relate to describing XML structure, particularly parent/child in a relational encoding  Relations are flat  Tuples can be “connected” via foreign-key/primary-key links

4 The Simplest Way to Encode a Tree  Suppose we had: XYZ 14  If we have no IDs, we CREATE values…  BinaryLikeEdge(key, label, type, value, parent) keylabeltypevalueparent 0treeref-- 1contentref-0 2sub- content ref-1 3i-contentref-1 4-strXYZ2 5-int143 What are shortcomings here?

5 Florescu/Kossmann Improved Edge Approach  Consider order, typing; separate the values  Edge(parent, ordinal, label, flag, target)  Vint(vid, value)  Vstring(vid, value) parentordlabelflagtarget -1treeref0 01contentref1 11sub-contentstrv2 11i-contentintv3 vidvalue v314 vidvalue v2XYZ

6 How Do You Compute the XML?  Assume we know the structure of the XML tree (we’ll see how to avoid this later)  We can compute an “XML-like” SQL relation using “outer unions” – we first this technique in XPERANTO  Idea: if we take two non-union-compatible expressions, pad each with NULLs, we can UNION them together  Let’s see how this works…

7 A Relation that Mirrors the XML Hierarchy  Output relation would look like: rLabelridrOrdclabelcidcOrdsLabelsidsOrdstrint tree content sub-content XYZ i-content

8 A Relation that Mirrors the XML Hierarchy  Output relation would look like: rLabelridrOrdclabelcidcOrdsLabelsidsOrdstrint tree content sub-content XYZ i-content

9 A Relation that Mirrors the XML Hierarchy  Output relation would look like: rLabelridrOrdclabelcidcOrdsLabelsidsOrdstrint tree content sub-content XYZ i-content Colors are representative of separate SQL queries…

10 SQL for Outputting XML  For each sub-portion we preserve the keys (target, ord) of the ancestors  Root: select E.label AS rLabel, E.target AS rid, E.ord AS rOrd, null AS cLabel, null AS cid, null AS cOrd, null AS subOrd, null AS sid, null AS str, null AS int from Edge E where parent IS NULL  First-level children: select null AS rLabel, E.target AS rid, E.ord AS rOrd, E1.label AS cLabel, E1.target AS cid, E1.ord AS cOrd, null AS … from Edge E, Edge E1 where E.parent IS NULL AND E.target = E1.parent

11 The Rest of the Queries  Grandchild: select null as rLabel, E.target AS rid, E.ord AS rOrd, null AS cLabel, E1.target AS cid, E1.ord AS cOrd, E2.label as sLabel, E2.target as sid, E2.ord AS sOrd, null as … from Edge E, Edge E1, Edge E2 where E.parent IS NULL AND E.target = E1.parent AND E1.target = E2.parent  Strings: select null as rLabel, E.target AS rid, E.ord AS rOrd, null AS cLabel, E1.target AS cid, E1.ord AS cOrd, null as sLabel, E2.target as sid, E2.ord AS sOrd, Vi.val AS str, null as int from Edge E, Edge E1, Edge E2, Vint Vi where E.parent IS NULL AND E.target = E1.parent AND E1.target = E2.parent AND Vi.vid = E2.target  How would we do integers?

12 Finally…  Union them all together: ( select E.label as rLabel, E.target AS rid, E.ord AS rOrd, … from Edge E where parent IS NULL) UNION ( select null as rLabel, E.target AS rid, E.ord AS rOrd, E1.label AS cLabel, E1.target AS cid, E1.ord AS cOrd, null as … from Edge E, Edge E1 where E.parent IS NULL AND E.target = E1.parent ) UNION (. : ) UNION (. : )  Then another module will add the XML tags, and we’re done!

13 “Inlining” Techniques  Folks at Wisconsin noted we can exploit the “structured” aspects of semi-structured XML  If we’re given a DTD, often the DTD has a lot of required (and often singleton) child elements  Book(title, author*, publisher)  Recall how normalization worked:  Decompose until we have everything in a relation determined by the keys  … But don’t decompose any further than that  Shanmugasundaram et al. try not to decompose XML beyond the point of singleton children

14 Inlining Techniques  Start with DTD, build a graph representing structure tree content sub-content i-content * * * The edges are annotated with ?, * indicating repetition, optionality of children They simplify the DTD to figure this ?

15 Building Schemas  Now, they tried several alternatives that differ in how they handle elements w/multiple ancestors  Can create a separate relation for each path  Can create a single relation for each element  Can try to inline these  For tree examples, these are basically the same  Combine non-set-valued things with parent  Add separate relation for set-valued child elements  Create new keys as needed name book author

16 Schemas for Our Example  TheRoot(rootID)  Content(parentID,  Sub-content(parentID, varchar)  I-content(parentID, int)  If we suddenly changed DTD to <!ELEMENT content(sub-content*, i-content?) what would happen?

17 XQuery to SQL  Inlining method needs external knowledge about the schema  Needs to supply the tags and info not stored in the tables  We can actually directly translate simple XQuery into SQL over the relations – not simply reconstruct the XML

18 An Example for $X in document(“mydoc”)/tree/content where $X/sub-content = “XYZ” return $X  The steps of the path expression are generally joins  … Except that some steps are eliminated by the fact we’ve inlined subelements  Let’s try it over the schema: TheRoot(rootID) Content(parentID, Sub-content(parentID, varchar) I-content(parentID, int)

19 XML Views of Relations  We’ve seen that views are useful things  Allow us to store and refer to the results of a query  We’ve seen an example of a view that changes from XML to relations – and we’ve even seen how such a view can be posed in XQuery and “unfolded” into SQL

20 An Important Set of Questions  Views are incredibly powerful formalisms for describing how data relates: fn: rel  …  rel  rel  Can I define a view recursively?  Why might this be useful in the XML construction case? When should the recursion stop?  Suppose we have two views, v 1 and v 2  How do I know whether they represent the same data?  If v 1 is materialized, can we use it to compute v 2 ?  This is fundamental to query optimization and data integration, as we’ll see later

21 Reasoning about Queries and Views  SQL or XQuery are a bit too complex to reason about directly  Some aspects of it make reasoning about SQL queries undecidable  We need an elegant way of describing views (let’s assume a relational model for now)  Should be declarative  Should be less complex than SQL  Doesn’t need to support all of SQL – aggregation, for instance, may be more than we need

22 Let’s Go Back a Few Weeks… Domain Relational Calculus Queries have form: { | p } Predicate: boolean expression over x1,x2, …, xn  We have the following operations:  Rx i op x j x i op constconst op x i  x i. p  x j. p p  q, p  q  p, p  q where op is , , , , ,  and x i,x j,… are domain variables; p,q are predicates  Recall that this captures the same expressiveness as the relational algebra domain variables predicate

23 A Similar Logic-Based Language: Datalog Borrows the flavor of the relational calculus but is a “real” query language  Based on the Prolog logic-programming language  A “datalog program” will be a series of if-then rules (Horn rules) that define relations from predicates  Rules are generally of the form: R out (T 1 )  R 1 (T 2 ), R 2 (T 3 ), …, c(T 2 [ … T n ) where R out is the relation representing the query result, R i are predicates representing relations, c is an expression using arithmetic/boolean predicates over vars, and T i are tuples of variables

24 Datalog Terminology  An example datalog rule: idb(x,y)  r1(x,z), r2(z,y), z < 10  Irrelevant variables can be replaced by _ (anonymous var)  Extensional relations or database schemas (edbs) are relations only occurring in rules’ bodies – these are base relations with “ground facts”  Intensional relations (idbs) appear in the heads – these are basically views  Distinguished variables are the ones output in the head  Ground facts only have constants, e.g., r1(“abc”, 123) headsubgoals body

25 Datalog in Action  As in DRC, the output (head) consists of a tuple for each possible assignment of variables that satisfies the predicate  We typically avoid “ 8 ” in Datalog queries: variables in the body are existential, ranging over all possible values  Multiple rules with the same relation in the head represent a union  We often try to avoid disjunction (“ Ç ”) within rules  Let’s see some examples of datalog queries (which consist of 1 or more rules):  Given Professor(fid, name), Teaches(fid, serno, sem), Courses(serno, cid, desc), Student(sid, name)  Return course names other than CIS 550  Return the names of the teachers of CIS 550  Return the names of all people (professors or students)

26 Datalog is Relationally Complete  We can map RA  Datalog:  Selection  p : p becomes a datalog subgoal  Projection  A : we drop projected-out variables from head  Cross-product r  s: q(A,B,C,D)  r(A,B),s(C,D)  Join r ⋈ s : q(A,B,C,D)  r(A,B),s(C,D), condition  Union r U s: q(A,B)  r(A,B) ; q(C, D) :- s(C,D)  Difference r – s: q(A,B)  r(A,B), : s(A,B)  (If you think about it, DRC  Datalog is even easier)  Great… But then why do we care about Datalog?

27 A Query We Can’t Answer in RA/TRC/DRC… Recall our example of a binary relation for graphs or trees (similar to an XML Edge relation): edge(from, to) If we want to know what nodes are reachable: reachable(F, T, 1) :- edge(F, T)distance 1 reachable(F, T, 2) :- edge(F, X), edge(X, T)dist. 2 reachable(F, T, 3) :- reachable(F, X, 2), edge(X, T)dist. 3 But how about all reachable paths? (Note this was easy in XPath over an XML representation -- //edge) (another way of writing  )

28 Recursive Datalog Queries Define a recursive query in datalog: reachable(F, T, 1) :- edge(F, T)distance 1 reachable(F, T, D + 1) :- reachable(F, X, D), edge(X, T)distance >1 What does this mean, exactly, in terms of logic?  There are actually three different (equivalent) definitions of semantics  All make a “closed-world” assumption: facts should exist only if they can be proven true from the input – i.e., assume the DB contains all of the truths out there!

29 Fixpoint Semantics One of the three Datalog models is based on a notion of fixpoint:  We start with an instance of data, then derive all immediate consequences  We repeat as long as we derive new facts In the RA, this requires a while loop!  However, that is too powerful and needs to be restricted  Special case: “inflationary semantics” (which terminates in time polynomial in the size of the database!)

30 Our Query in RA + while (inflationary semantics, no negation) Datalog: reachable(F, T, 1) :- edge(F, T) reachable(F, T, D+1) :- reachable(F, X, D), edge(X, T) RA procedure with while: reachable += edge ⋈ literal1 while change { reachable +=  F, T, D (  F ! X (edge) ⋈  T ! X,D ! D0 (reachable) ⋈ add1 ) } Note literal1(F,1) and add1(D0,D) are actually arithmetic and literal functions modeled here as relations.

31 Negation in Datalog Datalog allows for negation in rules  It’s essential for capturing RA set difference-style ops: Professor(name), : Student(name)  But negation can be tricky…  … You may recall that in the DRC, we had a notion of “unsafe” queries, and they return here… Single(X)  Person(X), : Married(X,Y)

32 Safe Rules/Queries Range restriction, which requires that every variable:  Occurs at least once in a positive relational predicate in the body,  Or it’s constrained to equal a finite set of values by arithmetic predicates Unsafe: q(X)  r(Y) q(X)  : r(X,X) q(X)  r(X) Ç t(Y) Safe: q(X)  r(X,Y) q(X)  X = 5 q(X)  : r(X,X), s(X) q(X)  r(X) Ç (t(Y),u(X,Y))  For recursion, use stratified semantics:  Allow negation only over edb predicates  Then recursively compute values for the idb predicates that depend on the edb’s (layered like strata)

33 A Special Type of Query: Conjunctive Queries A single Datalog rule with no “ Ç,” “ :,” “ 8 ” can express select, project, and join – a conjunctive query  Conjunctive queries are possible to reason about statically  (Note that we can write CQ’s in other languages, e.g., SQL!) We know how to “minimize” conjunctive queries An important simplification that can’t be done for general SQL We can test whether one conjunctive query’s answers always contain another conjunctive query’s answers (for ANY instance)  Why might this be useful?

34 Example of Containment Suppose we have two queries: q1(S,C) :- Student(S, N), Takes(S, C), Course(C, X), inCIS(C), Course(C, “DB & Info Systems”) q2(S,C) :- Student(S, N), Takes(S, C), Course(C, X) Intuitively, q1 must contain the same or fewer answers vs. q2:  It has all of the same conditions, except one extra conjunction (i.e., it’s more restricted)  There’s no union or any other way it can add more data We can say that q2 contains q1 because this holds for any instance of our DB {Student, Takes, Course}

35 Wrapping up Datalog… We’ve seen a new language, Datalog  It’s basically a glorified DRC with a special feature, recursion  It’s much cleaner than SQL for reasoning about  … But negation (as in the DRC) poses some challenges We’ve seen that a particular kind of query, the conjunctive query, is written naturally in Datalog  Conjunctive queries are possible to reason about  We can minimize them, or check containment  Conjunctive queries are very commonly used in our next problem, data integration