Histograms and Matching 主講人:虞台文. Content Overview Basic Histogram Structure Accessing Histograms Basic Manipulations with Histograms Color Spaces Histogram.

Slides:



Advertisements
Similar presentations
Advanced Image Processing Student Seminar: Lipreading Method using color extraction method and eigenspace technique ( Yasuyuki Nakata and Moritoshi Ando.
Advertisements

Image Processing … computing with and about data, … where "data" includes the values and relative locations of the colors that make up an image.
RGB-D object recognition and localization with clutter and occlusions Federico Tombari, Samuele Salti, Luigi Di Stefano Computer Vision Lab – University.
Image Transforms 主講人:虞台文. Content Overview Convolution Edge Detection – Gradients – Sobel operator – Canny edge detector – Laplacian Hough Transforms.
Histograms 1D Histograms 3D Histograms Equalisation
1 Challenge the future HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences Omar Oreifej Zicheng Liu CVPR 2013.
Wen-Hung Liao Department of Computer Science National Chengchi University November 27, 2008 Estimation of Skin Color Range Using Achromatic Features.
Simple Face Detection system Ali Arab Sharif university of tech. Fall 2012.
Gavin S Page OpenCV Tutorial Part II Loading Images and Using Histograms 29 November 2005.
Detecting Cartoons a Case Study in Automatic Video-Genre Classification Tzvetanka Ianeva Arjen de Vries Hein Röhrig.
Color spaces CIE - RGB space. HSV - space. CIE - XYZ space.
©SIProp Project, How to Make Hand Detector Noritsuna Imamura
PHP-based Image Recognition and Retrieval of Late 18th Century Artwork Ben Goodwin Handouts are available for students writing summaries for class assignments.
The Capacity of Color Histogram Indexing Dong-Woei Lin NTUT CSIE.
Programming Assignment 2 CS308 Fall Goals Improve your skills with using templates. Learn how to compile your code when using templates. Learn more.
Gavin S Page OpenCV Tutorial Part IV A Brief Guide to Memory Management (and other Miscellaneous Functions) 02 December 2005.
OpenCV Stacy O’Malley CS-590 Summer, What is OpenCV? Open source library of functions relating to computer vision. Cross-platform (Linux, OS X,
Face Detection: a Survey Speaker: Mine-Quan Jing National Chiao Tung University.
Building Recognition Landry Huet Sung Hee Park DW Wheeler.
Computing IV Chapter Three: imgproc module Image Processing Xinwen Fu.
1 Probabilistic Formulation for Skin Detection Sanun Srisuk Seminar I.
Matthias Wimmer, Bernd Radig, Michael Beetz Chair for Image Understanding Computer Science Technische Universität München Adaptive.
VINCENT URIAS, CURTIS HASH Detection of Humans in Images Using Skin-tone Analysis and Face Detection.
LOGO FACE DETECTION APPLICATION Member: Vu Hoang Dung Vu Ha Linh Le Minh Tung Nguyen Duy Tan Chu Duy Linh Uong Thanh Ngoc CAPSTONE PROJECT Supervisor:
Interactive Face Recognition (IFR) Nishanth Vincent Fairfield University Advisor: Professor Douglas A. Lyon, Ph.D.
L.
Tal Mor  Create an automatic system that given an image of a room and a color, will color the room walls  Maintaining the original texture.
The MPEG-7 Color Descriptors
Recognition and Matching based on local invariant features Cordelia Schmid INRIA, Grenoble David Lowe Univ. of British Columbia.
Detect Candle.  Open VC++ Directories configuration: Tools > Options > Projects and Solutions > VC++ Directories  Choose "Show directories for: Include.
Image Retrieval Part I (Introduction). 2 Image Understanding Functions Image indexing similarity matching image retrieval (content-based method)
Manipulating contrast/point operations. Examples of point operations: Threshold (demo) Threshold (demo) Invert (demo) Invert (demo) Out[x,y] = max – In[x,y]
By Doğaç Başaran & Erdem Yörük
L. Akshay Masare Piyush Awasthi IMAGE PROCESSING AND OPENCV.
Image Processing 主講人:虞台文. Content Smoothing Image Morphology Some Applications of Image Morphology Flood Fill Resize Image Pyramids Threshold.
Joon Hyung Shim, Jinkyu Yang, and Inseong Kim
Textures Repeated patterns Texture can be uniform or irregular Ex:fabric,soil,brick Surface finish also known as surface texture T = P 1 * V 1 * V c T=
Eye regions localization Balázs Harangi – University of Debrecen Ciprian Pop – Technical University of Cluj-Napoca László Kovács – University of Debrecen.
Levels of Image Data Representation 4.2. Traditional Image Data Structures 4.3. Hierarchical Data Structures Chapter 4 – Data structures for.
Kylie Gorman WEEK 1-2 REVIEW. CONVERTING AN IMAGE FROM RGB TO HSV AND DISPLAY CHANNELS.
` Tracking the Eyes using a Webcam Presented by: Kwesi Ackon Kwesi Ackon Supervisor: Mr. J. Connan.
A Reliable Skin Detection Using Dempster-Shafer Theory of Evidence
Advanced Science and Technology Letters Vol.28 (EEC 2013), pp Histogram Equalization- Based Color Image.
Presented by David Lee 3/20/2006
Statistical Models of Appearance for Computer Vision 主講人:虞台文.
COMPUTER VISION D10K-7C02 CV03: Light and Optics Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran.
HW6: Shot Detection B 劉品賢. Method Histogram differential Part 1 Using RGB color space Part 2 Using YCbCr color space but only analysis Y color.
Auto Focus System based on RTS2 and EPICS Jiajing Liu, Guangyu Zhang, Jian Wang Modern Physics Department, University of Science and.
Optical Flow walk through Aidean Sharghi Spring 14.
Hough Transform CS 691 E Spring Outline Hough transform Homography Reading: FP Chapter 15.1 (text) Some slides from Lazebnik.
LOGO FACE DETECTION APPLICATION Member: Vu Hoang Dung Vu Ha Linh Le Minh Tung Nguyen Duy Tan Chu Duy Linh Uong Thanh Ngoc CAPSTONE PROJECT Supervisor:
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Test image “data 22:” the original image in RGB color space. Figure Legend: From:
EE368 Final Project Spring 2003
Parameter Estimation 主講人:虞台文.
1-Introduction (Computing the image histogram).
What are Range Images?.
Histogram—Representation of Color Feature in Image Processing Yang, Li
Lecture 26: Faces and probabilities
Higher School of Economics , Moscow, 2016
Estimation of Skin Color Range Using Achromatic Features
Face Detection in Color Images
Overview Accomplishments Automatic Queen selection Side by Side Tracks
Digital Image Processing
Face Detection Gender Recognition 1 1 (19) 1 (1)
Tracking the Eyes using a Webcam
Midterm Exam Closed book, notes, computer Similar to test 1 in format:
Recognition and Matching based on local invariant features
EM Algorithm 主講人:虞台文.
Higher School of Economics , Moscow, 2016
Presentation transcript:

Histograms and Matching 主講人:虞台文

Content Overview Basic Histogram Structure Accessing Histograms Basic Manipulations with Histograms Color Spaces Histogram Comparisons Back Projection

Histograms and Matching Overview

Histograms

Histogram of an Image

Histogram for Skin Color

Applications Object Detection Image Retrieval Gesture Recognition

Histograms and Matching Basic Histogram Structure

CvHistogram  Multidimensional Histograms typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2];// for uniform histograms float** thresh2; // for nonuniform histograms CvMatND mat; // embedded matrix header // for array histograms } CvHistogram; typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2];// for uniform histograms float** thresh2; // for nonuniform histograms CvMatND mat; // embedded matrix header // for array histograms } CvHistogram;

Create Histogram CvHistogram* cvCreateHist( int dims, int* sizes, int type, float** ranges = NULL, int uniform = 1 ); CvHistogram* cvCreateHist( int dims, int* sizes, int type, float** ranges = NULL, int uniform = 1 );

Defer Set Ranges Used when calling cvCreateHist with ranges = NULL.

Clear and Release Histogram

Histograms and Matching Accessing Histograms

Access Bin Data

Direct Access of Bin Data typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2];// for uniform histograms float** thresh2; // for nonuniform histograms CvMatND mat; // embedded matrix header // for array histograms } CvHistogram; typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2];// for uniform histograms float** thresh2;// for nonuniform histograms CvMatND mat;// embedded matrix header // for array histograms } CvHistogram; hist->mat.data.fl

Direct Access of Histogram Information typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2];// for uniform histograms float** thresh2; // for nonuniform histograms CvMatND mat; // embedded matrix header // for array histograms } CvHistogram; typedef struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2];// for uniform histograms float** thresh2; // for nonuniform histograms CvMatND mat; // embedded matrix header // for array histograms } CvHistogram;

Histograms and Matching Basic Manipulations with Histograms

Calculate Histogram void cvCalcHist( IplImage** image, CvHistogram* hist, int accumulate=0, const CvArr* mask=NULL ); void cvCalcHist( IplImage** image, CvHistogram* hist, int accumulate=0, const CvArr* mask=NULL );

More Operations

Example  Graylevel Histogram

Download Test Program Download Test Program

Histograms and Matching Color Spaces

RGB Color Space

HSV Color Space

YCbCr Color Space

Color Space Conversion Article Some Algorithms Applet

OpenCV  Color Space Conversion void cvCvtColor( const CvArr* src, CvArr* dst, int code ) void cvCvtColor( const CvArr* src, CvArr* dst, int code )

Skin Color Detection by HSV and RGB

Automatic Face Detection

Histogram Usage Examples

Example  Hue-Sat Histogram

Download Test Program Download Test Program

Histograms and Matching Histogram Comparisons

Histogram Comparisons in OpenCV #define CV_COMP_CORREL 0 #define CV_COMP_CHISQR 1 #define CV_COMP_INTERSECT 2 #define CV_COMP_BHATTACHARYYA 3

Histogram Comparisons in OpenCV #define CV_COMP_CORREL 0 #define CV_COMP_CHISQR 1 #define CV_COMP_INTERSECT 2 #define CV_COMP_BHATTACHARYYA 3 Correlation Method (CV_COMP_CORREL) maximum mismatch perfect match

Histogram Comparisons in OpenCV #define CV_COMP_CORREL 0 #define CV_COMP_CHISQR 1 #define CV_COMP_INTERSECT 2 #define CV_COMP_BHATTACHARYYA 3 Chi-square Method (CV_COMP_CHISQR) bad mismatch perfect match

Histogram Comparisons in OpenCV #define CV_COMP_CORREL 0 #define CV_COMP_CHISQR 1 #define CV_COMP_INTERSECT 2 #define CV_COMP_BHATTACHARYYA 3 Intersection Method (CV_COMP_INTERSECT) total mismatch perfect match H 1 and H 2 are normalized to one before comparing

Histogram Comparisons in OpenCV #define CV_COMP_CORREL 0 #define CV_COMP_CHISQR 1 #define CV_COMP_INTERSECT 2 #define CV_COMP_BHATTACHARYYA 3 BHATTACHARYYA Method (CV_COMP_BHATTACHARYYA) total mismatch perfect match

Histogram Comparisons in OpenCV

Histograms and Matching Back Projection

Back projection is a way of recording how well the pixels or patches of pixels fit the distribution of pixels in a histogram model – cvCalcBackProject() – cvCalcBackProjectPatch()

Back Projection Back projection is a way of recording how well the pixels or patches of pixels fit the distribution of pixels in a histogram model – cvCalcBackProject() – cvCalcBackProjectPatch()

cvCalcBackProject

Example Download Test Program Download Test Program

Patch-Based Projection