Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a.

Slides:



Advertisements
Similar presentations
Exponential Functions and Their Graphs Section 3-1.
Advertisements

Exponential and Logarithmic Functions
Exponential Functions and their Graphs
Exponents and Properties Recall the definition of a r where r is a rational number: if then for appropriate values of m and n, For example,
Definition of a Logarithmic Function For x > 0 and b > 0, b≠ 1, y = log b x is equivalent to b y = x The function f (x) = log b x is the logarithmic function.
Exponential Functions Section 4.1 JMerrill, 2005 Revised 2008.
1 The graphs of many functions are transformations of the graphs of very basic functions. The graph of y = –x 2 is the reflection of the graph of y = x.
Objective: To identify and solve exponential functions.
§ 9.1 Exponential Functions.
Lesson 3.1, page 376 Exponential Functions Objective: To graph exponentials equations and functions, and solve applied problems involving exponential functions.
Exponential Functions and Their Graphs Digital Lesson.
Let’s examine exponential functions. They are different than any of the other types of functions we’ve studied because the independent variable is in.
Copyright © Cengage Learning. All rights reserved. Exponential and Logarithmic Functions.
Exponential Growth Exponential Decay
3 Exponential and Logarithmic Functions
Exponential and Logarithm
exponential functions
Exponential Functions. Exponential Functions and Their Graphs.
8.2 – Properties of Exponential Functions
Exponential Functions Section 4.1 Objectives: Evaluate exponential functions. Graph exponential functions. Evaluate functions with base e. Use compound.
Exponential Functions and Their Graphs Digital Lesson.
Mrs. McConaughyHonors Algebra 21 Graphing Logarithmic Functions During this lesson, you will:  Write an equation for the inverse of an exponential or.
Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by: f (x) = b x or y = b x Where b is.
Exponential Functions and Their Graphs 2 The exponential function f with base a is defined by f(x) = a x where a > 0, a  1, and x is any real number.
Exponential Functions and Their Graphs
Exponential Functions and Their Graphs Digital Lesson.
1 C ollege A lgebra Inverse Functions ; Exponential and Logarithmic Functions (Chapter4) L:17 1 University of Palestine IT-College.
Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a.
Exponential Functions Algebra III, Sec. 3.1 Objective Recognize, evaluate, and graph exponential functions.
Transformations of Functions. Graphs of Common Functions See Table 1.4, pg 184. Characteristics of Functions: 1.Domain 2.Range 3.Intervals where its increasing,
1 Example – Graphs of y = a x In the same coordinate plane, sketch the graph of each function by hand. a. f (x) = 2 x b. g (x) = 4 x Solution: The table.
Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a.
Copyright © Cengage Learning. All rights reserved. 11 Exponential and Logarithmic Functions.
Chapter 3 Exponential and Logarithmic Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Exponential Functions.
Exponential Functions and Their Graphs Digital Lesson.
Exponential Functions and Their Graphs/ Compound Interest 2015/16.
Exponential Function If a > 0 and a ≠ 1, then defines the exponential function with base a. 4.2.
Unit 3 Exponential, Logarithmic, Logistic Functions 3.1 Exponential and Logistic Functions (3.1) The exponential function f (x) = 13.49(0.967) x – 1 describes.
Slide Copyright © 2012 Pearson Education, Inc.
5.2 Exponential Functions and Graphs. Graphing Calculator Exploration Graph in your calculator and sketch in your notebook: a) b) c) d)
GRAPHING EXPONENTIAL FUNCTIONS f(x) = 2 x 2 > 1 exponential growth 2 24–2 4 6 –4 y x Notice the asymptote: y = 0 Domain: All real, Range: y > 0.
2.5 Shifting, Reflecting, and Stretching Graphs. Shifting Graphs Digital Lesson.
Section 5.2 Exponential Functions and Graphs Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
 A function that can be expressed in the form and is positive, is called an Exponential Function.  Exponential Functions with positive values of x are.
(a) (b) (c) (d) Warm Up: Show YOUR work!. Warm Up.
1 PRECALCULUS Section 1.6 Graphical Transformations.
The Natural Base e An irrational number, symbolized by the letter e, appears as the base in many applied exponential functions. This irrational number.
Transformations of Functions. The vertex of the parabola is at (h, k).
Exponential Functions Section 4.1 Definition of Exponential Functions The exponential function f with a base b is defined by f(x) = b x where b is a.
3.1 Exponential Functions and Their Graphs Objectives: Students will recognize and evaluate exponential functions with base a. Students will graph exponential.
Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a.
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential.
College Algebra Chapter 4 Exponential and Logarithmic Functions Section 4.2 Exponential Functions.
Algebra 2 Properties of Exponential Functions Lesson 7-2 Part 2.
Exponential and Logarithmic Functions
Copyright © Cengage Learning. All rights reserved.
Exponential Functions and Their Graphs Section 3-1
Intro to Exponential Functions
Exponential Functions and Their Graphs
Exponential and Logarithmic Functions
Exponential Functions Section 4.1
Exponential and Logarithmic Functions
Graphing Exponential Functions
Unit 3: Exponential and Logarithmic Functions
PreCalc – Section 5.2 Exponential Functions
Exponential Functions
Transformation rules.
Properties of Exponential Functions Lesson 7-2 Part 1
Exponential Functions and Their Graphs Section 3-1
Exponential and Logarithmic Functions
Presentation transcript:

Exponential Functions

Definition of the Exponential Function The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a positive constant other than and x is any real number. The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a positive constant other than and x is any real number. / Here are some examples of exponential functions. f (x) = 2 x g(x) = 10 x h(x) = 3 x+1 Base is 2.Base is 10.Base is 3.

Text Example The exponential function f (x) = 13.49(0.967) x – 1 describes the number of O-rings expected to fail, when the temperature is x°F. On the morning the Challenger was launched, the temperature was 31°F, colder than any previous experience. Find the number of O- rings expected to fail at this temperature. SolutionBecause the temperature was 31°F, substitute 31 for x and evaluate the function at 31. f (x) = 13.49(0.967) x – 1 This is the given function. f (31) = 13.49(0.967) 31 – 1 Substitute 31 for x. f (31) = 13.49(0.967) 31 – 1=3.77

Characteristics of Exponential Functions 1.The domain of f (x) = b x consists of all real numbers. The range of f (x) = b x consists of all positive real numbers. 2.The graphs of all exponential functions pass through the point (0, 1) because f (0) = b 0 = 1. 3.If b > 1, f (x) = b x has a graph that goes up to the right and is an increasing function. 4.If 0 < b < 1, f (x) = b x has a graph that goes down to the right and is a decreasing function. 5.f (x) = b x is a one-to-one function and has an inverse that is a function. 6.The graph of f (x) = b x approaches but does not cross the x-axis. The x- axis is a horizontal asymptote. 1.The domain of f (x) = b x consists of all real numbers. The range of f (x) = b x consists of all positive real numbers. 2.The graphs of all exponential functions pass through the point (0, 1) because f (0) = b 0 = 1. 3.If b > 1, f (x) = b x has a graph that goes up to the right and is an increasing function. 4.If 0 < b < 1, f (x) = b x has a graph that goes down to the right and is a decreasing function. 5.f (x) = b x is a one-to-one function and has an inverse that is a function. 6.The graph of f (x) = b x approaches but does not cross the x-axis. The x- axis is a horizontal asymptote. f (x) = b x b > 1 f (x) = b x 0 < b < 1

Transformations Involving Exponential Functions Shifts the graph of f (x) = b x upward c units if c > 0. Shifts the graph of f (x) = b x downward c units if c < 0. g(x) = -b x + cVertical translation Reflects the graph of f (x) = b x about the x-axis. Reflects the graph of f (x) = b x about the y-axis. g(x) = -b x g(x) = b -x Reflecting Multiplying y-coordintates of f (x) = b x by c, Stretches the graph of f (x) = b x if c > 1. Shrinks the graph of f (x) = b x if 0 < c < 1. g(x) = c b x Vertical stretching or shrinking Shifts the graph of f (x) = b x to the left c units if c > 0. Shifts the graph of f (x) = b x to the right c units if c < 0. g(x) = b x+c Horizontal translation DescriptionEquationTransformation

Text Example Use the graph of f (x) = 3 x to obtain the graph of g(x) = 3 x+1. SolutionExamine the table below. Note that the function g(x) = 3 x+1 has the general form g(x) = b x+c, where c = 1. Because c > 0, we graph g(x) = 3 x+1 by shifting the graph of f (x) = 3 x one unit to the left. We construct a table showing some of the coordinates for f and g to build their graphs. f (x) = 3 x g(x) = 3 x+1 (0, 1) (-1, 1)

Problems Sketch a graph using transformation of the following: Recall the order of shifting: horizontal, reflection (horz., vert.), vertical.

The Natural Base e An irrational number, symbolized by the letter e, appears as the base in many applied exponential functions. This irrational number is approximately equal to More accurately, The number e is called the natural base. The function f (x) = e x is called the natural exponential function. f (x) = e x f (x) = 2 x f (x) = 3 x (0, 1) (1, 2) (1, e) (1, 3)

Formulas for Compound Interest After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas: 1.For n compoundings per year: 2.For continuous compounding: A = Pe rt.

Example:Choosing Between Investments You want to invest $8000 for 6 years, and you have a choice between two accounts. The first pays 7% per year, compounded monthly. The second pays 6.85% per year, compounded continuously. Which is the better investment? SolutionThe better investment is the one with the greater balance in the account after 6 years. Let’s begin with the account with monthly compounding. We use the compound interest model with P = 8000, r = 7% = 0.07, n = 12 (monthly compounding, means 12 compoundings per year), and t = 6. The balance in this account after 6 years is $12, more

Example:Choosing Between Investments You want to invest $8000 for 6 years, and you have a choice between two accounts. The first pays 7% per year, compounded monthly. The second pays 6.85% per year, compounded continuously. Which is the better investment? SolutionFor the second investment option, we use the model for continuous compounding with P = 8000, r = 6.85% = , and t = 6. The balance in this account after 6 years is $12,066.60, slightly less than the previous amount. Thus, the better investment is the 7% monthly compounding option.

Example Use A= Pe rt to solve the following problem: Find the accumulated value of an investment of $2000 for 8 years at an interest rate of 7% if the money is compounded continuously Solution: A= Pe rt A = 2000e (.07)(8) A = 2000 e (.56) A = 2000 * 1.75 A = $3500