Over Chapter 2. Splash Screen Graphing Linear Equations Lesson 3-1.

Slides:



Advertisements
Similar presentations
Over Lesson 8–2 A.A B.B C.C D.D 5-Minute Check 1 Which equation best describes the sequence 9, 10, 11, 12, …? Find the 22nd term of the sequence 7, 10,
Advertisements

Lines with Zero Slope and Undefined Slope
Warm Up 0?1? 2? Graph the linear functions.0?1? 2?
Math 0099 Finding Slope, X-Intercept, and Y- Intercept.
Quick graphs using Intercepts 4.3 Objective 1 – Find the intercepts of the graph of a linear equation Objective 2 – Use intercepts to make a quick graph.
4.5 Graphing Linear Equations
Linear Equations Ax + By = C.
4.1 Introduction to Linear Equations in Two Variables
Rectangular Coordinate System
Objectives Find the two intercepts Graph a line using intercepts
Splash Screen. Then/Now You represented relationships among quantities using equations. (Lesson 2–1) Graph linear equations. Identify linear equations,
Learn to use slopes and intercepts to graph linear equations.
Warm ups Translate three times a number decreased by eight is negative thirteen into an equation. Solve –24 + b = –13. Solve for b. A stamp collector bought.
Final Review The original and sale price of an item are shown below. During which week did the price change the most? 2. Which graph has a negative.
Splash Screen Graphing Equations in Slope-intercept Form Lesson 4-1.
Gold Day – 2/24/2015 Blue Day – 2/25/2015.  Unit 5 – Linear functions and Applications  Review – slope, slope intercept form  Standard Form  Finding.
Objectives The student will be able to:
Submitted to - Sh.Bharat Bhushan Sir Submitted by- Mayank Devnani
Bell Quiz.
Given g(x) = 2x 2 +1, find g(3) g(3)=2(3) 2 +1 g(3)=2(9)+1 g(3)=19.
Bellwork. Objective 1 The student will be able to: graph ordered pairs on a coordinate plane.
Lesson 3-1 Representing Relations Lesson 3-2 Representing Functions
Section 6-3: Standard Form of a Linear Equation SPI 22C: select the graph that represents a given linear function Objective: Graph and write linear equations.
1. Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Graphing Linear Equations and Inequalities CHAPTER 4.1The Rectangular.
Notes - Coordinate Plane & Graphing Quiz
Lesson 6-3 (Part 1) Standard Form page 298
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 2) CCSS Then/Now New Vocabulary Key Concept: Standard Form of a Linear Equation Example 1:
Section 2.2 Notes: Linear Relations and Functions.
Martin-Gay, Beginning Algebra, 5ed 22 Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form.
What is the x-intercept? The x-coordinate of a point where the graph crosses the x- axis. What is the y-intercept? The y-coordinate of a point where a.
Concept. Example 1 A Identify Linear Equations First rewrite the equation so that the variables are on the same side of the equation. A. Determine whether.
Graphing Linear Functions 1. graph linear functions. 2. write equations in standard form.
Lesson 1-3, 1-4 Represent Functions as Graphs; Graphing Linear Equations using Intercepts.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) Then/Now New Vocabulary Key Concept:Monomial Functions Example 1:Analyze Monomial Functions.
Section 8.2 Points, Lines and Their Graphs. Vocabulary Graph/Plot – an ordered pair or a point in a numbered plane Horizontal Axis – x-axis Vertical Axis.
Copyright © 2013, 2009, 2006 Pearson Education, Inc. 1 1 Section 3.2 Graphing Linear Equations Using Intercepts Copyright © 2013, 2009, 2006 Pearson Education,
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–1) Then/Now New Vocabulary Example 1:Identify Linear Functions Example 2:Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 2) CCSS Then/Now New Vocabulary Key Concept: Standard Form of a Linear Equation Example 1:
Then/Now You represented relationships among quantities using equations. (Lesson 2–1) Graph linear equations. Identify linear equations, intercepts, and.
Graphing Linear Equations
TLW identify linear equations and intercepts.
Splash Screen. CCSS Content Standards F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables.
Identify Linear Functions & Their Graphs Honors Math – Grade 8.
Splash Screen. Then/Now You represented relationships among quantities using equations. Graph linear equations. Identify linear equations, intercepts,
Chapter 3 Section 1 Copyright © 2011 Pearson Education, Inc.
Warm-Up Determine the coordinates of each point in the graph below. y
Holt Algebra Using Intercepts Warm Up 1. 5x + 0 = –10 Solve each equation. – – = 0 + 3y x + 14 = –3x –5y – 1 = 7y + 5.
Warm-Up 1) Determine whether the point (0,3) is a solution to y = 5x minutes 2) Graph y = -2x + 1.
Graphing Linear Equations In Standard Form Ax + By = C.
Graphing Linear Equations In Standard Form Ax + By = C.
LESSON 3–1 Graphing Linear Equations. Over Chapter 2 5-Minute Check 1 Translate three times a number decreased by eight is negative thirteen into an equation.
1 Math Pacing Graphing Linear Equations. Equations as Relations A linear equation can be written in the standard form of a linear equation: Ax + By =
Equations with fractions can be simplified by multiplying both sides by a common denominator. 3x + 4 = 2x + 8 3x = 2x + 4 x = 4 Example: Solve
Graphing Linear Equations Chapter 7.2. Graphing an equation using 3 points 1. Make a table for x and y to find 3 ordered pairs. 2. I choose 3 integers.
Lesson 5-4: Graphing Linear Equations
3-3E Linear Functions Graphing using Intercepts Algebra 1 Glencoe McGraw-HillLinda Stamper.
Graphing Linear Equations
Splash Screen.
Linear Equation in Two Variables
Graphing Linear Functions
Objectives The student will be able to:
Splash Screen.
Objectives The student will be able to:
Objectives The student will be able to:
Objectives The student will be able to:
Objectives The student will be able to:
Objectives The student will be able to:
3 Chapter Chapter 2 Graphing.
Warm-Up
Sec 6-3-b Learning Objectives The student will be able to:
Presentation transcript:

Over Chapter 2

Splash Screen Graphing Linear Equations Lesson 3-1

Then/Now You represented relationships among quantities using equations. Graph linear equations. Identify linear equations, intercepts, and zeros.

Concept linear equation – An equation in the form Ax + By = C, with a graph that is a straight line. Note: A, B, and C must be integers

Example 1 A Identify Linear Equations First, rewrite the equation so that the variables are on the same side of the equation. A. Determine whether 5x + 3y = z + 2 is a linear equation. Write the equation in standard form. 5x + 3y = z + 2Original equation 5x + 3y – z=z + 2 – zSubtract z from each side. 5x + 3y – z= 2Simplify. Since 5x + 3y – z has three variables, it cannot be written in the form Ax + By = C. Answer: This is not a linear equation.

Example 1 B Rewrite the equation so that both variables are on the same side of the equation. Subtract y from each side. Original equation B. Determine whether is a linear equation. Write the equation in standard form. Simplify. Identify Linear Equations

Example 1 B To write the equation with integer coefficients, multiply each term by 4. Answer: This is a linear equation. Original equation Multiply each side of the equation by 4. 3x – 4y=32Simplify. The equation is now in standard form, where A = 3, B = –4, and C = 32. Identify Linear Equations

Example 1 CYP A A. Determine whether y = 4x – 5 is a linear equation. Write the equation in standard form. A.linear equation; y = 4x – 5 B.not a linear equation C.linear equation; 4x – y = 5 D.linear equation; 4x + y = 5

Example 1 CYP B B. Determine whether 8y –xy = 7 is a linear equation. Write the equation in standard form. A.not a linear equation B.linear equation; 8y – xy = 7 C.linear equation; 8y = 7 + xy D.linear equation; 8y – 7 = xy

x-intercept – the x-coordinate of a point where a graph crosses the x-axis. y-intercept – the y-coordinate of a point where a graph crosses the y-axis. constant – a monomial that is a real number.

Example 2 A Find the x- and y-intercepts of the segment graphed. A x-intercept is 200; y-intercept is 4 B x-intercept is 4; y-intercept is 200 C x-intercept is 2; y-intercept is 100 D x-intercept is 4; y-intercept is 0 Read the Test Item We need to determine the x- and y-intercepts of the line in the graph.

Example 2 A Solve the Test Item Step 1Find the x-intercept. Look for the point where the line crosses the x-axis. The line crosses at (4, 0). The x-intercept is 4 because it is the x-coordinate of the point where the line crosses the x-axis.

Example 2 A Solve the Test Item Step 2Find the y-intercept. Look for the point where the line crosses the y-axis. The line crosses at (0, 200). The y-intercept is 200 because it is the y-coordinate of the point where the line crosses the y-axis. Answer: The correct answer is B.

Example 2 CYP A Find the x- and y-intercepts of the graphed segment. A.x-intercept is 10; y-intercept is 250 B.x-intercept is 10; y-intercept is 10 C.x-intercept is 250; y-intercept is 10 D.x-intercept is 5; y-intercept is 10

Example 3 A Find Intercepts ANALYZE TABLES A box of peanuts is poured into bags at the rate of 4 ounces per second. The table shows the function relating to the weight of the peanuts in the box and the time in seconds the peanuts have been pouring out of the box. A. Determine the x- and y-intercepts of the graph of the function. Answer: x-intercept = 500; y-intercept = 2000

Example 3 B Find Intercepts B. Describe what the intercepts in the previous problem mean. Answer: The x-intercept 500 means that after 500 seconds, there are 0 ounces of peanuts left in the box. The y-intercept of 2000 means that at time 0, or before any peanuts were poured, there were 2000 ounces of peanuts in the box.

Example 3 CYP A ANALYZE TABLES Jules has a gas card for a local gas station. The table shows the function relating the amount of money on the card and the number of times he has stopped to purchase gas. A. Determine the x- and y-intercepts of the graph of the function. A. x-intercept is 5; y-intercept is 125 B. x-intercept is 5; y-intercept is 5 C. x-intercept is 125; y-intercept is 5 D. x-intercept is 5; y-intercept is 10

Example 3 CYP B B. Describe what the y-intercept of 125 means in the previous problem. A.It represents the time when there is no money left on the card. B.It represents the number of food stops. C.At time 0, or before any food stops, there was $125 on the card. D.This cannot be determined.

Example 4 Graph by Using Intercepts Graph 4x – y = 4 using the x-intercept and the y-intercept. To find the x-intercept, let y = 0. 4x – y =4Original equation 4x – 0 = 4Replace y with 0. 4x=4Simplify. x=1Divide each side by 4. To find the y-intercept, let x = 0. 4x – y = 4Original equation 4(0) – y =4Replace x with 0. –y=4Simplify. y =–4Divide each side by –1.

Example 4 Graph by Using Intercepts The x-intercept is 1, so the graph intersects the x-axis at (1, 0). The y-intercept is –4, so the graph intersects the y-axis at (0, –4). Plot these points. Then draw a line that connects them. Answer:

Example 4 CYP Is this the correct graph for 2x + 5y = 10? A.yes B.no

Example 5 Graph by Making a Table Graph y = 2x + 2. The domain is all real numbers, so there are infinite solutions. Select values from the domain and make a table. Then graph the ordered pairs. Draw a line through the points. Answer:

Example 5 CYP Is this the correct graph for y = 3x – 4? A.yes B.no

p 159 #13-22 all, odd, all, odd

End of the Lesson