Relations.

Slides:



Advertisements
Similar presentations
Chapter 2 Revision of Mathematical Notations and Techniques
Advertisements

CSE 211- Discrete Structures
Equivalence Relations
Fall 2002CMSC Discrete Structures1 You Never Escape Your… Relations.
Equivalence Relations
Relations Relations on a Set. Properties of Relations.
April 9, 2015Applied Discrete Mathematics Week 9: Relations 1 Solving Recurrence Relations Another Example: Give an explicit formula for the Fibonacci.
Chap6 Relations Def 1: Let A and B be sets. A binary relation from A
Representing Relations Using Matrices
5/16/20151 You Never Escape Your… Relations. 5/16/20152Relations If we want to describe a relationship between elements of two sets A and B, we can use.
Applied Discrete Mathematics Week 11: Graphs
Relations & Their Properties. Copyright © Peter Cappello2 Introduction Let A & B be sets. A binary relation from A to B is a subset of A x B. Let R be.
Regular Expression (EXTRA)
Discrete Mathematics Lecture#11.
1 Section 7.1 Relations and their properties. 2 Binary relation A binary relation is a set of ordered pairs that expresses a relationship between elements.
Relations Chapter 9.
Applied Discrete Mathematics Week 10: Equivalence Relations
Equivalence Relations MSU CSE 260. Outline Introduction Equivalence Relations –Definition, Examples Equivalence Classes –Definition Equivalence Classes.
Logics for Data and Knowledge Representation Introduction to Algebra Chiara Ghidini, Luciano Serafini, Fausto Giunchiglia and Vincenzo Maltese.
(CSC 102) Lecture 15 Discrete Structures. Previous Lectures Summary  Procedural Versions  Properties of Sets  Empty Set Properties  Difference Properties.
Properties of Relations In many applications to computer science and applied mathematics, we deal with relations on a set A rather than relations from.
CS Discrete Mathematical Structures Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, 9:30-11:30a Fall 2002KSU - Discrete Structures1.
Chapter 9. Chapter Summary Relations and Their Properties Representing Relations Equivalence Relations Partial Orderings.
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Unit Unit 04 Relations IT DisiciplineITD1111 Discrete Mathematics & Statistics STDTLP1 Unit 4 Relations.
Discrete Math for CS Binary Relation: A binary relation between sets A and B is a subset of the Cartesian Product A x B. If A = B we say that the relation.
2.6 Equivalence Relation §1.Equivalence relation §Definition 2.18: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric,
Chapter 9. Section 9.1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R ⊆ A × B. Example: Let A = { 0, 1,2 } and.
Discrete Structures1 You Never Escape Your… Relations.
April 14, 2015Applied Discrete Mathematics Week 10: Equivalence Relations 1 Properties of Relations Definition: A relation R on a set A is called transitive.
Lecture 4.4: Equivalence Classes and Partially Ordered Sets CS 250, Discrete Structures, Fall 2011 Nitesh Saxena *Adopted from previous lectures by Cinda.
Relations and their Properties
Fall 2002CMSC Discrete Structures1 You Never Escape Your… Relations.
Lecture on Relations 1Developed by CSE Dept., CIST Bhopal.
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Chapter 8: Relations. 8.1 Relations and Their Properties Binary relations: Let A and B be any two sets. A binary relation R from A to B, written R : A.
SECTION 9 Orbits, Cycles, and the Alternating Groups Given a set A, a relation in A is defined by : For a, b  A, let a  b if and only if b =  n (a)
Copyright © Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS.
RelationsCSCE 235, Spring Introduction A relation between elements of two sets is a subset of their Cartesian products (set of all ordered pairs.
Set Theory Concepts Set – A collection of “elements” (objects, members) denoted by upper case letters A, B, etc. elements are lower case brackets are used.
1 Equivalence relations Binary relations: –Let S1 and S2 be two sets, and R be a (binary relation) from S1 to S2 –Not every x in S1 and y in S2 have such.
Lecture 4.4: Equivalence Classes and Partially Ordered Sets CS 250, Discrete Structures, Fall 2012 Nitesh Saxena Adopted from previous lectures by Cinda.
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications (5 th Edition) Kenneth H. Rosen Chapter 7 Relations.
1 CMSC 250 Discrete Structures CMSC 250 Lecture 41 May 7, 2008.
Lecture 7: Relations Dr Andrew Purkiss-Trew Cancer Research UK Mathematics for Computing.
Relations Chapter 9 Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Representing Relations Using Digraphs
Discrete Mathematical
Relations and Their Properties
Citra Noviyasari, S.Si, MT
Relations.
Relations Binary relations represent relationships between the elements of two sets. A binary relation R from set A to set B is defined by: R  A 
Equivalence Relations
Relations Chapter 9.
Applied Discrete Mathematics Week 10: Relations
RELATION KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS )
Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 9 Relations Slides are adopted from.
Applied Discrete Mathematics Week 9: Equivalence Relations
CMSC Discrete Structures
8.5 Equivalence Relations
Relations and Their Properties
8.1 Relations and Their Properties
Discrete Math (2) Haiming Chen Associate Professor, PhD
Relations.
Applied Discrete Mathematics Week 5: Boolean Algebra
8.5 Equivalence Relations and 8.6 Partial Ordering
Applied Discrete Mathematics Week 6: Relations/Digraphs
9.5 Equivalence Relations
Equivalence relations
Chapter 8 (Part 2): Relations
Presentation transcript:

Relations

Relations If we want to describe a relationship between elements of two sets A and B, we can use ordered pairs with their first element taken from A and their second element taken from B. Since this is a relation between two sets, it is called a binary relation. Definition: Let A and B be sets. A binary relation from A to B is a subset of AB. In other words, for a binary relation R we have R  AB. We use the notation aRb to denote that (a, b)R and aRb to denote that (a, b)R.

Relations When (a, b) belongs to R, a is said to be related to b by R. Example: Let P be a set of people, C be a set of cars, and D be the relation describing which person drives which car(s). P = {Carl, Suzanne, Peter, Carla}, C = {Mercedes, BMW, tricycle} D = {(Carl, Mercedes), (Suzanne, Mercedes), (Suzanne, BMW), (Peter, tricycle)} This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

Functions as Relations You might remember that a function f from a set A to a set B assigns a unique element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such that b = f(a). Since the graph of f is a subset of AB, it is a relation from A to B. Moreover, for each element a of A, there is exactly one ordered pair in the graph that has a as its first element.

Functions as Relations Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph. This is done by assigning to an element aA the unique element bB such that (a, b)R.

Relations on a Set Definition: A relation on the set A is a relation from A to A. In other words, a relation on the set A is a subset of AA. Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) | a < b} ?

Relations on a Set R 1 2 3 4 Solution: R = { (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 1 1 R 1 2 3 4 X X X 2 2 X X 3 3 X 4 4

Relations on a Set How many different relations can we define on a set A with n elements? A relation on a set A is a subset of AA. How many elements are in AA ? There are n2 elements in AA, so how many subsets (= relations on A) does AA have? The number of subsets that we can form out of a set with m elements is 2m. Therefore, 2n2 subsets can be formed out of AA. Answer: We can define 2n2 different relations on A.

Properties of Relations We will now look at some useful ways to classify relations. Definition: A relation R on a set A is called reflexive if (a, a)R for every element aA. Are the following relations on {1, 2, 3, 4} reflexive? R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No. R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes. R = {(1, 1), (2, 2), (3, 3)} No. Definition: A relation on a set A is called irreflexive if (a, a)R for every element aA.

Properties of Relations Definitions: A relation R on a set A is called symmetric if (b, a)R whenever (a, b)R for all a, bA. A relation R on a set A is called antisymmetric if a = b whenever (a, b)R and (b, a)R. A relation R on a set A is called asymmetric if (a, b)R implies that (b, a)R for all a, bA.

Properties of Relations Are the following relations on {1, 2, 3, 4} symmetric, antisymmetric, or asymmetric? R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetric R = {(1, 1)} sym. and antisym. R = {(1, 3), (3, 2), (2, 1)} antisym. and asym. R = {(4, 4), (3, 3), (1, 4)} antisym.

Properties of Relations Definition: A relation R on a set A is called transitive if whenever (a, b)R and (b, c)R, then (a, c)R for a, b, cA. Are the following relations on {1, 2, 3, 4} transitive? R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes. R = {(1, 3), (3, 2), (2, 1)} No. R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.

Equivalence Relations Equivalence relations are used to relate objects that are similar in some way. Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation R are called equivalent. Fall 2002 CMSC 203 - Discrete Structures

Equivalence Relations Since R is symmetric, a is equivalent to b whenever b is equivalent to a. Since R is reflexive, every element is equivalent to itself. Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent. Obviously, these three properties are necessary for a reasonable definition of equivalence. Fall 2002 CMSC 203 - Discrete Structures

Equivalence Relations Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation? Solution: R is reflexive, because l(a) = l(a) and therefore aRa for any string a. R is symmetric, because if l(a) = l(b) then l(b) = l(a), so if aRb then bRa. R is transitive, because if l(a) = l(b) and l(b) = l(c), then l(a) = l(c), so aRb and bRc implies aRc. R is an equivalence relation. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Equivalence Classes Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by [a]R. When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class. If b[a]R, b is called a representative of this equivalence class. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Equivalence Classes Example: In the previous example (strings of identical length), what is the equivalence class of the word mouse, denoted by [mouse] ? Solution: [mouse] is the set of all English words containing five letters. For example, ‘horse’ would be a representative of this equivalence class. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Equivalence Classes Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent: aRb [a] = [b] [a]  [b]   Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets Ai, iI, forms a partition of S if and only if (i) Ai   for iI Ai  Aj = , if i  j iI Ai = S Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Equivalence Classes Examples: Let S be the set {u, m, b, r, o, c, k, s}. Do the following collections of sets partition S ? {{m, o, c, k}, {r, u, b, s}} yes. {{c, o, m, b}, {u, s}, {r}} no (k is missing). {{b, r, o, c, k}, {m, u, s, t}} no (t is not in S). {{u, m, b, r, o, c, k, s}} yes. {{b, o, o, k}, {r, u, m}, {c, s}} yes ({b,o,o,k} = {b,o,k}). {{u, m, b}, {r, o, c, k, s}, } no ( not allowed). Fall 2002 CMSC 203 - Discrete Structures