Regional Coastal Ocean Modeling: Tutorial

Slides:



Advertisements
Similar presentations
Weather Research & Forecasting: A General Overview
Advertisements

Computation of High-Resolution Global Ocean Model using Earth Simulator By Norikazu Nakashiki (CRIEPI) Yoshikatsu Yoshida (CRIEPI) Takaki Tsubono (CRIEPI)
ISSUES IN PREDICTING SOLITARY WAVES IN STRAITS OF MESSINA AND LUZON A. Warn-Varnas, P. Smolarkiewicz, J. Hawkins, S. Piacsek, S. Chin-Bing, D. King and.
Assimilation of Sea Surface Temperature into a Northwest Pacific Ocean Model using an Ensemble Kalman Filter B.-J. Choi Kunsan National University, Korea.
Günther Zängl, DWD1 Improvements for idealized simulations with the COSMO model Günther Zängl Deutscher Wetterdienst, Offenbach, Germany.
8 June 2007 Training program on Modelling: A Case study – Hydro-dynamic Model of Zanzibar channel Mayorga-Adame,C.G., Sanga,I.P.L., Majuto, C., Makame,
Patrick Marchesiello Brest, 13 Janvier 2005 Le modèle ROMS et son utilisation sur NYMPHEA Centre IRD de Bretagne.
Gökay Karakaş 1 Patrick Marchesiello 2 Stephan Frickenhaus 1 Nicolas Nowald 3 Reiner Schlitzer 1 1 Alfred-Wegener-Institute for Polar and Marine Research.
Modeling the M 2 and O 1 Barotropic and Baroclinic Tides in the Gulf of Mexico Using the HYbrid Coordinate Ocean Model (HYCOM) Flavien Gouillon 1 ; B.
About Estuarine Dynamics
Predictability of Japan / East Sea (JES) System to Uncertain Initial / Lateral Boundary Conditions and Surface Winds LCDR. Chin-Lung Fang LCDR. Chin-Lung.
Outline of Talk Introduction Toolbox functionality Results Conclusions and future development.
Ocean-atmosphere simulations of the Eastern Mediterranean using COAMPS TM /NCOM Objectives  Simulate Mediterranean and subregional (e.g., Adriatic and.
Goal: to simplify the design and analysis of ROMS model configurations
Mesh refinement methods in ROMS Laurent Debreu INRIA, Grenoble, France In collaboration with Patrick Marchesiello and Pierrick Penven (IRD, Brest, France)
Nowcast/Forecast System of Prince William Sound, Alaska (PWS-NFS) INKWEON BANG CHRISTOPHER N.K. MOOERS OCEAN PREDICTION EXPERIMENTAL LABORATORY (OPEL)
Vertical Mixing Parameterizations and their effects on the skill of Baroclinic Tidal Modeling Robin Robertson Lamont-Doherty Earth Observatory of Columbia.
Departamento de Física
COLLABORATORS: P. Estrade, S. Herbette, C. Lett, A. Peliz, C. Roy, B. Sow, C. Roy EDDY-DRIVEN DISPERSION IN COASTAL UPWELLING SYSTEMS California Canary.
Non-hydrostatic algorithm and dynamics in ROMS Yuliya Kanarska, Alexander Shchepetkin, Alexander Shchepetkin, James C. McWilliams, IGPP, UCLA.
© University of Reading 2007www.reading.ac.uk RMetS Student Conference, Manchester September 2008 Boundary layer ventilation by mid-latitude cyclones Victoria.
SELFE: Semi-implicit Eularian- Lagrangian finite element model for cross scale ocean circulation Paper by Yinglong Zhang and Antonio Baptista Presentation.
An Assimilating Tidal Model for the Bering Sea Mike Foreman, Josef Cherniawsky, Patrick Cummins Institute of Ocean Sciences, Sidney BC, Canada Outline:
NEMO Developments and application at the Bedford Institute of Oceanography, Canada F. Dupont, Y. Lu, Z. Wang, D. Wright Nemo user meeting 2009Dalhousie-DFO.
3D multi-fluid model Erika Harnett University of Washington.
Configuring ROMS for South of Java Kate Hedstrom, ARSC/UAF October, 2007.
Cthru Technical Brief Gary Morris Center of Higher Learning Stennis Space Center.
“ Combining Ocean Velocity Observations and Altimeter Data for OGCM Verification ” Peter Niiler Scripps Institution of Oceanography with original material.
ROMS: Real Ocean Modeling Stories or Reasons Ocean Modeling Sucks Sally Warner tOAStER, Friday Harbor Labs January 25, 2008.
Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde How to make a three-dimensional numerical model that.
Dale haidvogel Nested Modeling Studies on the Northeast U.S. Continental Shelves Dale B. Haidvogel John Wilkin, Katja Fennel, Hernan.
Test of improved boundaries configuration for the Tagus Estuary Pre-operational Model (OM) Ângela Canas Maretec SANEST.
Downscaling Future Climate Scenarios for the North Sea 2006 ROMS/TOMS Workshop, Alcalá de Henares, 6-8 November Bjørn Ådlandsvik Institute of Marine Research.
Regional Ocean Modelling in Southern Africa Sea Surface Temperature [ o C] Acknowledgements: N. Chang, UCT; L. Debreu, IMAG; P. Florenchie, BCLME; J. Lefevre,
MS 698: 2014 Implementing a Hydrodynamic Model - Part 2 Julia Moriarty 14 February 2014.
Modeling the upper ocean response to Hurricane Igor Zhimin Ma 1, Guoqi Han 2, Brad deYoung 1 1 Memorial University 2 Fisheries and Oceans Canada.
Imposed versus Dynamically Modeled Sea Ice: A ROMS study of the effects on polynyas and waters masses in the Ross Sea John M. Klinck, Y. Sinan Hüsrevoglu.
Production and Export of High Salinity Shelf Water in a Model of the Ross Sea Michael S. Dinniman Y. Sinan Hüsrevoğlu John M. Klinck Center for Coastal.
Sensitivity Studies Using Nested HYCOM Models 2004 Layered Ocean Model Users’ Workshop February 9-11, 2004 RSMAS, Miami, FL Patrick Hogan Luis Zamudio.
Validation of decadal simulations of mesoscale structures in the North Sea and Skagerrak Jon Albretsen and Lars Petter Røed.
ROMS as a Component of the Community Climate System Model (CCSM) Enrique Curchitser, IMCS/Rutgers Kate Hedstrom, ARSC/UAF Bill Large, Mariana Vertenstein,
WRF Four-Dimensional Data Assimilation (FDDA) Jimy Dudhia.
Ensemble-based Assimilation of HF-Radar Surface Currents in a West Florida Shelf ROMS Nested into HYCOM and filtering of spurious surface gravity waves.
Application of ROMS for the Spencer Gulf and on the adjacent shelf of South Australia Carlos Teixeira & SARDI Oceanography Group Aquatic Sciences 2009.
© Crown copyright Met Office The EN4 dataset of quality controlled ocean temperature and salinity profiles and monthly objective analyses Simon Good.
Some GOTM Physics SOPRAN GOTM School Warnemünde: Hans Burchard Baltic Sea Research Institute Warnemünde, Germany.
1 A brief introduction to UMCES Chesapeake Bay Model Yun Li and Ming Li University of Maryland Center for Environmental Science VIMS, SURA Meeting Oct
Report on POP & CICE of RACM components Jaromir Jakacki, IO PAS.
Report on POP & CICE of RACM components Jaromir Jakacki, IO PAS Boulder, CO, 2010.
Standardized Test Set for Nonhydrostatic Dynamical Cores of NWP Models
Permanent Meanders in the California Current System and Comparison of Near- Surface Observations with OGCM Solutions Luca Centurioni (SIO-PORD) Collaborators:
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
NUMERICAL STUDY OF THE MEDITERRANEAN OUTFLOW WITH A SIMPLIFIED TOPOGRAPHY Sergio Ramírez-Garrido, Jordi Solé, Antonio García-Olivares, Josep L. Pelegrí.
Interannual to decadal variability of circulation in the northern Japan/East Sea, Dmitry Stepanov 1, Victoriia Stepanova 1 and Anatoly Gusev.
A RAPIDLY RELOCATABLE VERSION OF THE POM Germana Daniel N. FoxNaval Research
HYCOM data assimilation Short term: ▪ Improve current OI based technique Assimilate satellite data (tracks) directly Improve vertical projection technique.
ROMS Embedded Gridding, Test and Application for the Simulation of the Central Upwelling of the Pacific Coast of the United States Contributors: James.
Tropical Atlantic SST in coupled models; sensitivity to vertical mixing Wilco Hazeleger Rein Haarsma KNMI Oceanographic Research The Netherlands.
The effect of tides on the hydrophysical fields in the NEMO-shelf Arctic Ocean model. Maria Luneva National Oceanography Centre, Liverpool 2011 AOMIP meeting.
THE BC SHELF ROMS MODEL THE BC SHELF ROMS MODEL Diane Masson, Isaak Fain, Mike Foreman Institute of Ocean Sciences Fisheries and Oceans, Canada The Canadian.
Interfacing Model Components CRTI RD Project Review Meeting Canadian Meteorological Centre August 22-23, 2006.
Coupling ROMS and CSIM in the Okhotsk Sea Rebecca Zanzig University of Washington November 7, 2006.
Enhancement of Wind Stress and Hurricane Waves Simulation
WRF Four-Dimensional Data Assimilation (FDDA)
ROMS Framework: Kernel
Coupled atmosphere-ocean simulation on hurricane forecast
Harvard Ocean Prediction System (HOPS)
gWRF Workflow and Input Data Requirements
NWP Strategy of DWD after 2006 GF XY DWD Feb-19.
  Robin Robertson Lamont-Doherty Earth Observatory
Presentation transcript:

Regional Coastal Ocean Modeling: Tutorial Roms_tools Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 System requirements F95 (ifort), Matlab Netcdf library for Fortran and Matlab (MexCDF) 2 Gbites of disk space ROMS_AGRIF sources Matlab toolbox for ROMS: ROMS_tools Data: bathymetry, hydrography, surface fluxes global climatological datasets are included Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Package Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Pre-processing data % cd ~/Roms_tools/Run % matlab >> start adds the path of different toolboxes >> make_grid >> make_forcing >> make_clim >> make_tides >> make_biol >> nestgui Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 make_grid.m % % Title % title='Peru Test Model'; % % Grid file name % grdname='roms_grd.nc'; % % Grid dimensions: % lonmin=-85; lonmax=-75; latmin=-15; latmax=-7; % % Grid resolution [degree] % dl=1/3; % % Minimum depth [m] % hmin=10; % % Topography netcdf file name (ETOPO 2) % topofile='../Topo/etopo2.nc'; % % Slope parameter (r=grad(h)/h) maximum value for topography smoothing % rtarget=0.2; lon, lat, dx, dy, h L=31 M=26 h Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Smoothing methods r = Δh / h is the slope of the logarithm of h One method (ROMS): smoothing ln(h) until r < rmax Res: 5 km r < 0.25 Res: 1 km r < 0.25 Senegal Bathymetry Profil Patrick Marchesiello IRD 2005

Smoothing method and resolution Bathymetry Smoothing Error off Senegal Convergence at ~ 4 km resolution Standard Deviation [m] Grid Resolution [deg] Patrick Marchesiello IRD 2005

Errors in Bathymetry data compilations Gebco1 compilation Etopo2: Satellite observations Shelf errors (noise) Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Refine the mask >> editmask Interactive matlab tool to modify masking according to high resolution coastline data Patrick Marchesiello IRD 2005

Getting the wind forcing >> make_forcing % % Title - Grid file name - Forcing file name % title='Forcing (COADS)'; grdname='roms_grd.nc'; frcname='roms_frc.nc'; % % % Set times and cycles: monthly climatology for all data % time=[15:30:345]; % time cycle=360; % cycle Default COADS climatological surface forcing of Da Silva et al., 1994 Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Modified Julian dates MJD is a modification of the Julian Date that is routinely used by astronomers, geodesists, and even some historians. This dating convention, designed to facilitate chronological calculations, numbers all days in consecutive fashion, beginning so as to precede the historical period. Julian Day Number 0 is noon 1 January 4713 B.C. MJD modifies this Julian Date in two ways. The MJD begins at midnight rather than noon, in keeping with more standard conventions. Secondly, for simplicity, the first two digits of the Julian Date are removed. This is because, for some three centuries following 17 November 1858, the Julian day lies between 2400000 and 2500000. The MJD drops those first "24" digits. Thus, we have MJD = JD - 2400000.5 To convert Julian Dates to Gregorian dates (month/day/year) we can use various converters Patrick Marchesiello IRD 2005

Getting the lateral boundary conditions % % Title % title='Climatology'; % % Switches for selecting what to process (1=ON) % makeclim=1; %1: process boundary data makeoa=1; %1: process oa data makeini=1; %1: process initial data % % Grid file name - Climatology file name % Initial file name - OA file name % grdname ='roms_grd.nc'; frcname ='roms_frc.nc'; clmname ='roms_clm.nc'; ininame ='roms_ini.nc'; oaname ='roms_oa.nc'; % % Vertical grid parameters % theta_s=7.; theta_b=0.; hc=5.; N=20; % number of vertical levels (rho) >> make_clim OA (objective analysis) files are intermediate files where hydrographic data are interpolated (extrapolated under bathymetry) and stored on a horizontal grid but on z vertical grid. The transformation to S-coordinate is done after. Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 obc=[1 0 1 1]; % open boundaries (1=open , [S E N W]) % % Level of reference for geostrophy calculation % zref=-500; % % Day of initialization % tini=15; % % Set times and cycles: monthly climatology for all data % time=[15:30:345]; % time cycle=360; % cycle % % Data climatologies file names: % temp_month_data ='../WOA2001/temp_month.cdf'; temp_ann_data ='../WOA2001/temp_ann.cdf'; insitu2pot=1; % transform in-situ temperature to potential temperature salt_month_data ='../WOA2001/salt_month.cdf'; salt_ann_data ='../WOA2001/salt_ann.cdf'; % Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005

Getting the tides boundary conditions >> make_tides % % TPXO file name % tidename='../Tides/TPXO6.nc'; % % ROMS file names % gname = 'roms_grd.nc'; fname = 'roms_frc.nc'; % % Number of tides component to process % Ntides=10; % % Set start time of simulation % year = 2000; month = 1; day = 15; hr = 0.; minute = 0.; second = 0.; This is where tidal information is added This is the starting time of simulation. A procedure correct phases and amplitudes (nodal corrections) for real time runs. It employs parts of a post-processing code from Egbert and Erofeeva (2002) TPXO model. Running Real-time tides requires using modified julian dates as initial time (roms_ini.nc). Patrick Marchesiello IRD 2005

Getting child grids for nesting >> nestgui Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Preparing the model % vi param.h % vi cppdefs.h Define CPP keys that used by the C-preprocessor when compiling the model Reduce code to its minimal size: fast compilation Avoid fortran logical statements: efficient coding parameter (LLm0=29, MMm0=24, N=20) !        Peru Test Case Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 PERU : Configuration Name, this is used in param.h. OPENMP : Activate Open-MP parallelization protocol. MPI : Activate MPI parallelization protocol. AGRIF : Activate the nesting capabilities SOLVE3D : Define if solving 3D primitive equations UV_COR : Activate Coriolis terms. UV_ADV : Activate advection terms. SSH_TIDES : Define for processing sea surface elevation tidal data at the model boundaries. UV_TIDES : Define for processing ocean current tidal data at the model boundaries. VAR_RHO_2D : Activate nonuniform density in barotropic mode pressure- gradient terms. FLAT_WEIGHTS : Use a more dissipative averaging for the baroclinic/barotropic coupling. CURVGRID : Activate curvilinear coordinate grid option. SPHERICAL : Activate longitude/latitude grid positioning. MASKING : Activate land masking in the domain. AVERAGES : Define if writing out time-averaged data. SALINITY : Define if using salinity. NONLIN_EOS : Activate the nonlinear equation of state. SPLIT_EOS : Activate to split the nonlinear equation of state in a adiabatic part and a compressible part. ZCLIMATOLOGY : Activate processing of sea surface height climatology. UCLIMATOLOGY : Activate processing of momentum climatology. ZNUDGING : Activate open boundary passive/active term + nudging layer for zeta. M2NUDGING : Activate open boundary passive/active term + nudging layer for ubar and vbar. SPONGE : Activate areas of enhanced viscosity/diffusion. … Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Input parameter file title: PERU TEST MODEL time_stepping: NTIMES dt[sec] NDTFAST NINFO 720 1800 45 1 S-coord: THETA_S, THETA_B, Hc (m) 7.0d0 0.0d0 5.0d0 grid: filename roms_grd.nc forcing: filename roms_frc.nc climatology: filename roms_clm.nc initial: NRREC filename 1 roms_ini.nc restart: NRST, NRPFRST / filename 720 -1 roms_rst.nc history: LDEFHIS, NWRT, NRPFHIS / filename T 144 0 roms_his.nc averages: NTSAVG, NAVG, NRPFAVG / filename 1 144 0 roms_avg.nc primary_history_fields: zeta UBAR VBAR U V wrtT(1:NT) T F F T T 10*T auxiliary_history_fields: rho Omega W Akv Akt Aks HBL Bostr F F F F T F T F primary_averages: zeta UBAR VBAR U V wrtT(1:NT) T T T T T 10*T auxiliary_averages: rho Omega W Akv Akt Aks HBL F T F F T F T % vi roms.in rho0: 1025.d0 lateral_visc: VISC2, VISC4 [m^2/sec for all] 0. 0. tracer_diff2: TNU2(1:NT) [m^2/sec for all] 10*0.d0 bottom_drag: RDRG [m/s], RDRG2, Zob [m], Cdb_min, Cdb_max 3.0d-04 0.d-3 0.d-3 1.d-4 1.d-1 gamma2: 1.d0 sponge: X_SPONGE [m], V_SPONGE [m^2/sec] 150.e3 500. nudg_cof: TauT_in, TauT_out, TauM_in, TauM_out [days for all] 1. 360. 3. 360. Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Compiling the model % jobcomp Automatic selection of compilation options according to the plateform Set library path Use Makefile: C-preprocessing: file.F  file.f Compiling: file.f  file.o Links with libraries  executable roms Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Preparing AGRIF % vi AGRIF_FixedGrids.in 2 20 45 34 59 3 3 3 30 55 70 89 3 3 2 1 10 30 20 40 5 3 5 1 20 33 34 44 3 3 3 PERU test case Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Running the model MAIN: started time-steping. STEP time[DAYS] KIN_EN POT_EN TOTAL_EN NET_VOLUME trd 0 15.00000 0.000000000E+00 2.5311945E+01 2.5311945E+01 2.2335422E+15 0 1 15.02083 3.332338732E-06 2.5312150E+01 2.5312154E+01 2.2335431E+15 0 2 15.04167 1.062963402E-05 2.5312316E+01 2.5312327E+01 2.2335455E+15 0 3 15.06250 2.075678260E-05 2.5312446E+01 2.5312466E+01 2.2335461E+15 0 4 15.08333 3.186463589E-05 2.5312543E+01 2.5312575E+01 2.2335469E+15 0 5 15.10417 4.285427484E-05 2.5312627E+01 2.5312670E+01 2.2335480E+15 0 6 15.12500 5.333102059E-05 2.5312691E+01 2.5312744E+01 2.2335479E+15 0 7 15.14583 6.354045596E-05 2.5312719E+01 2.5312782E+01 2.2335465E+15 0 8 15.16667 7.411816854E-05 2.5312701E+01 2.5312775E+01 2.2335457E+15 0 9 15.18750 8.562138804E-05 2.5312650E+01 2.5312735E+01 2.2335467E+15 0 10 15.20833 9.828165268E-05 2.5312569E+01 2.5312667E+01 2.2335473E+15 0 11 15.22917 1.117146701E-04 2.5312465E+01 2.5312577E+01 2.2335475E+15 0 12 15.25000 1.255576462E-04 2.5312345E+01 2.5312471E+01 2.2335475E+15 0 13 15.27083 1.393087941E-04 2.5312135E+01 2.5312275E+01 2.2335470E+15 0 14 15.29167 1.525558114E-04 2.5311800E+01 2.5311952E+01 2.2335463E+15 0 15 15.31250 1.653985076E-04 2.5311350E+01 2.5311515E+01 2.2335465E+15 0 16 15.33333 1.779958127E-04 2.5310792E+01 2.5310970E+01 2.2335468E+15 0 17 15.35417 1.905668926E-04 2.5310134E+01 2.5310325E+01 2.2335470E+15 0 18 15.37500 2.034591092E-04 2.5309385E+01 2.5309588E+01 2.2335470E+15 0 19 15.39583 2.165195050E-04 2.5308554E+01 2.5308771E+01 2.2335469E+15 0 20 15.41667 2.294900067E-04 2.5307653E+01 2.5307882E+01 2.2335465E+15 0 21 15.43750 2.422211112E-04 2.5306695E+01 2.5306937E+01 2.2335463E+15 0 22 15.45833 2.545401621E-04 2.5305693E+01 2.5305948E+01 2.2335463E+15 0 23 15.47917 2.664383353E-04 2.5304665E+01 2.5304932E+01 2.2335464E+15 0 24 15.50000 2.780681955E-04 2.5303629E+01 2.5303907E+01 2.2335465E+15 0 25 15.52083 2.896947197E-04 2.5302600E+01 2.5302890E+01 2.2335465E+15 0 26 15.54167 3.013595537E-04 2.5301595E+01 2.5301897E+01 2.2335462E+15 0 % roms roms.in Patrick Marchesiello IRD 2005

Visualizing the results >> roms_gui Patrick Marchesiello IRD 2005

Patrick Marchesiello IRD 2005 Analysing the results Make statistics (mean, variance, …) Use tracers, compute residence times and Lagrangian transport Make budgets (energy, heat, vorticity, momentum, …) Comparison with available data … Patrick Marchesiello IRD 2005