1.2.7.2 Interconnection boards Test data memories VME interface Trigger TX Trigger RX FPGA: memory and I/O control DAQ pipelines and buffers DAQ interface.

Slides:



Advertisements
Similar presentations
Technische Universität München A digital calorimetric trigger for the COMPASS experiment at CERN Markus Krämer J. Friedrich, S. Huber, B. Ketzer, I. Konorov,
Advertisements

1 Calorimeter Trigger to L1-Board data transmission Umberto Marconi INFN Bologna.
6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
January 11, Data Format for MICE Trackers Tracker Data Readout Basics Preliminary Tracker Data Format and Suitability for VME Data Transfers. Questions.
MICE Fiber Tracker Electronics AFEII for MICE (Front end readout board) Recall: AFEs mount on ether side of the VLPC cass, with fibers going to the VLPCs.
CHL -2 Level 1 Trigger System Fully Pipelined Custom ElectronicsDigitization Drift Chamber Pre-amp The GlueX experiment will utilize fully pipelined front.
Electronics for the INO ICAL detector B.Satyanarayana Tata Institute of Fundamental Research For INO collaboration.
MICE Tracker Front End Progress Tracker Data Readout Basics Progress in Increasing Fraction of Muons Tracker Can Record Determination of Recordable Muons.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
DAQ WS03 Sept 2006Jean-Sébastien GraulichSlide 1 DDAQ Trigger o Reminder: DAQ Trigger vs Particle Trigger o DAQ Trigger o Particle Trigger 1) Possible.
1 CLEO PAC 11/March/00 M. Selen, University of Illinois CLEO-III Trigger & DAQ Status Trigger Illinois (Cornell) DAQ OSU Caltech Cornell.
The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System D.Acosta, A.Madorsky, B.Scurlock, S.M.Wang University of Florida A.Atamanchuk,
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
Prototype Test of SPring-8 FADC Module Da-Shung Su Wen-Chen Chang 02/07/2002.
Commissioning of ICAL prototype detector electronics B.Satyanarayana TIFR, Mumbai.
HBD FEM the block diagram preamp – FEM cable Status Stuffs need to be decided….
Hall D Level 1 Trigger Dave Doughty 1/10/2008 Hall D Collaboration Meeting.
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Mircea Bogdan, NSS2007 Oct. 27-Nov.3, 2007 – Honolulu, Hawaii1 Custom 14-Bit, 125MHz ADC/Data Processing Module for the KL Experiment at J-Parc M. Bogdan,
Front End DAQ for TREND. 2 Introduction: analog part 2015, feb 10 th.
Global Trigger H. Bergauer, Ch. Deldicque, J. Erö, K. Kastner, S. Kostner, A. Nentchev, B. Neuherz, N. Neumeister, M. Padrta, P. Porth, H. Rohringer, H.
1 VeLo L1 Read Out Guido Haefeli VeLo Comprehensive Review 27/28 January 2003.
The L0 Calorimeter Trigger U. Marconi On behalf of the Bologna Group CSN1, Catania 16/9/02.
ECL trigger for Super Belle B.G. Cheon (Hanyang U)‏ KEK 1 st open meeting of the Super KEKB Collaboration.
1 FADC Boards for JPARC-K Preliminary Proposal Mircea Bogdan November 16, 2006.
Serial Data Link on Advanced TCA Back Plane M. Nomachi and S. Ajimura Osaka University, Japan CAMAC – FASTBUS – VME / Compact PCI What ’ s next?
ATLAS Trigger / current L1Calo Uli Schäfer 1 Jet/Energy module calo µ CTP L1.
PSI - 11 Feb The Trigger System of the MEG Experiment Marco Grassi INFN - Pisa On behalf of D. Nicolò F. Morsani S. Galeotti.
Final FED 1 Testing Set Up Testing idea and current status Preliminary results Future development Summary M. Noy
1.2.7 Trigger A.Nappi TB Nov 11, Digitizers ( )  Functions 25 MHZ 10 bit p.h. + 6bit time digitizers Digital processing  Flavor A: p.h.
12GeV Trigger Workshop Christopher Newport University 8 July 2009 R. Chris Cuevas Welcome! Workshop goals: 1.Review  Trigger requirements  Present hardware.
P09311: FPGA Based Multi-Purpose Driver / Data Acquisition System Sponsor: Dr. Marcin Lukowiak Team MemberDisciplineRole Adam Van FleetEEProject Manager/Documentation.
20 Out-panel Overview Crate-based (VME 9U) architecture. 4 crates for entire MUID system: –North Horizontal, North Vertical, South Horizontal, South Vertical.
Connector Differential Receiver 8 Channels 65 MHz 12 bits ADC FPGA Receive/buffer ADC data Format triggered Events Generate L1 Primitives Receive timing.
PSI - 11 Feb Status of the electronic systems of the MEG Experiment.
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
Plans and Progress on the FPGA+ADC Card Pack Chris Tully Princeton University Upgrade Workshop, Fermilab October 28, 2009.
1 Carleton/Montreal Electronics development J.-P Martin (Montreal) Shengli Liu & M. Dixit (Carleton) LC TPC Meeting DESY Hamburg, 4 June 2007.
E. Hazen - DTC1 DAQ / Trigger Card for HCAL SLHC Readout E. Hazen - Boston University.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
The LHCb Calorimeter Triggers LAL Orsay and INFN Bologna.
M. Selen, 7/24/03 LEPP Lunch: Pg 1 The CLEO-c Trigger System: More Than Just Blinking Lights ! The CLEO-c Trigger System:
Work on Muon System TDR - in progress Word -> Latex ?
14-BIT Custom ADC Board Rev. B
Production Firmware - status Components TOTFED - status
Iwaki System Readout Board User’s Guide
TELL1 A common data acquisition board for LHCb
CMS EMU TRIGGER ELECTRONICS
Vertex 2005 November 7-11, 2005 Chuzenji Lake, Nikko, Japan
Muon Recording Studies and Progress for the MICE Tracker
Irakli MANDJAVIDZE DAPNIA, CEA Saclay, Gif-sur-Yvette, France
14-BIT Custom ADC Board JParc-K Collaboration Meeting
Regional Cal. Trigger Milestone: Major Production Complete
Testing the PPrASIC Karsten Penno KIP, University of Heidelberg
Example of DAQ Trigger issues for the SoLID experiment
New Calorimeter Trigger Receiver Card (U. Wisconsin)
JParc-K DAQ System Mircea Bogdan December 9-10, 2006.
The CMS Tracking Readout and Front End Driver Testing
The LHCb L0 Calorimeter Trigger
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
PID meeting Mechanical implementation Electronics architecture
sPHENIX DOE-SC CD-1/3a Review WBS 1.5.3: CalElec Digitizers
Digitally subtracted pulse between
PHENIX forward trigger review
for the trigger subsystem working group:
Multi Chip Module (MCM) The ALICE Silicon Pixel Detector (SPD)
TELL1 A common data acquisition board for LHCb
Presentation transcript:

Interconnection boards Test data memories VME interface Trigger TX Trigger RX FPGA: memory and I/O control DAQ pipelines and buffers DAQ interface sync Clock + control

Module collector board  1 of 3 identical channels (share single FPGA?) FPGA Time filter, analog sums, logical OR OR S2 S1 to custom backplane VME interface Outputs : serial, each 12 25MHz OR: 6 bits earliest time, 6 bits second earliest time of the OR’s of groups of channels in time and above OT ST: 6 bits earliest time, 6 bits second earliest time for sums of channels in time (each above SIT) that are above SOT S 1 : 6 bits time, 6 bits amplitude for the earliest sum of input channels in time and above SIT S 2 : 6 bits time, 6 bits amplitude for the second earliest sum of input channels in time and above SIT ST IN 1 IN 2 IN 3 IN 4 IN 5 IN 6 Inputs: serial, each 12 25MHz 6 bits time, 6 bits amplitude

Strip routing card FPGA: Process backplane inputs sums; reroute to zero suppressed outputs grouped by strips Strips 1-3 mod 1-3 Module sums Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Backplane Strips 4-6 mod Strips 6-9 mod Strips 1-3 mod 1-3 Strips 4-6 mod 1-3 Strips 6-9 mod

Strip collector FPGA: demultiplex + resync inputs make strip sums a.superstrips: 2 by 2 opposing b.projections: in depth Strips mod. 1-3 Q1 mod. 4-6 Q1 mod. 7-9 Q1 mod. 1-3 Q2 mod. 4-6 Q2 mod. 7-9 Q2 Projections Logical outputs (2 bits/mod,) To backplane Superstrip 1 Superstrip 2 Superstrip 3 Can share hardware design with module collector ?

Module collectors for PR-CAL + UPV  Prerad One view-module has 9 scintillators read on both sides If 18 channels/board: 8 boards per quadrant view  Calorimeter Region matching one PR strip : 2×18 Shashlik modules  x “strip” made with 6 (2×3) groups, y “strip” with 6 (1×6)  One module collector handles 3 “strips” 3 module collectors per quadrant view  Total number required: 24  One PR crate can handle all modules of one view Need 8 crates for PR front end ( 9 u ? )  x-y sums 9 modules × 4 quadrants = 36 channels Module collectors: 12  Upstream photon veto (assume all used in trigger) Has 22 ×6 logs read on both ends. One digitizer serves 9 channels. Total 15 WFD Module collectors: 1 z y x y

Module collectors for barrel veto  Barrel veto 2042 shashlik modules One digitizer/group of 18 channels Grouping for trigger:  A(3,4,5,10,11,12),A(2,6,9,13),A(1,7,8,14)  B(3,4,5,10,11,12),B(2,6,9,13),B(1,7,8,14)  C(3,4,5,10,11,12),C(2,6,9,13),C(1,7,8,14)  D(full azimuth) Module collectors: 4 z  AB C D AB C D A

Module collectors: Barrel CPV  Barrel CPV Each layer in z has 162 PM’s  Simple solution Use only 16 channel per WFD 2 WFD/layer  20 WFD Can map 3 layers in z to one module collector channel  Module collectors: 2  Patchwork solution (see picture) Use 18 channels/WFD   18 WFD (3 module collector channels)  Module collector: 1  Other systems Upstream end cap CPV, downstream end cap CPV, downstream beam pipe, magnet 2 module collectors

Final count of module collector boards Simple CPV (3) CAL strips24 PR-CAL modules 12 BV4 UPV1 CPV2 Other channels 2 Total45

Strip routing cards - Strip collector  Strip routing card (16 boards) 2 crates per PR-CAL quadrant/view  Each crate has two strip router modules with outputs grouped by strip  16 boards  Strip collector (18 boards) Each board handles 3 strips Backplane output to pattern recognition board  There are 18 strips/view  12 boards  Share hardware with module collector  Connect with pattern recognition board with the same backplane used for the strip routing board

Module collectors , 5, 6 Route/collect modules module coll. strip routing strip coll , 9, 10 Logic modules projection pattern boolean logic TL BL TR BR PR-CAL- veto logic Trigger Align, form, transmit, scalers Central logic BV, UPV xy

Change summaries Better define interconnection boards ( ) Recount module collectors ( ) for small r and 3 channels/board: 45 Cost module collector each (?) Remove second prototype for module collector Strip collector shares hardware with module collector Strip collector and pattern boards sit in the same 9U crate and are connected by custom backplane (same design as for strip routing) Pattern board and projection board collapse to a single 9U board receiving output from backplane (increase design time)