Sensory and Motor Pathways

Slides:



Advertisements
Similar presentations
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
Advertisements

Chapter 21 Somatic Senses
Chapter 12 Nervous System III - Senses
DO NOW Get into a group of 3 with the people who have the same Case # as you on their Do Now paper. Read the article and summarize it as a group. Choose.
General Sensory Reception. The Sensory System What are the senses ? How sensory systems work Body sensors and homeostatic maintenance Sensing the external.
Principles of Human Anatomy and Physiology, 11e1 Chapter 16 Sensory, Motor & Integrative Systems.
The Peripheral Nervous System
Chapter 10a Sensory Physiology.
Senses.
The Peripheral Nervous System: Afferent Division
Nervous System Exercises 22 and 23. Reflexes Reflexes are fast, predictable, automatic, subconscious responses to changes inside or outside the body.
Somatic and Special Senses
PNS – Afferent Division Sensory Physiology Part I
Somatic senses  There are 4 somatosensory modalities  Touch  Temperature  Nociception (pain and itch)  Proprioception.
Spinal Nerves, Dermatomes, and Cranial Nerves
Sensation: The conscious or subconscious awareness of external or internal stimuli. Perception: The conscious awareness and the interpretation of meaning.
Sensory Nervous System Objectives:  Describe the process of sensory transduction in general  List the stimuli to which we have receptors and, for each,
Anatomy and Physiology Special Senses Unit. Sensation Conscious or subconscious awareness of external stimuli.
Peripheral Nervous System & Reflex Activity Part A Prepared by Janice Meeking & W. Rose. Figures from Marieb & Hoehn 8 th, 9 th ed. Portions copyright.
LAB EXERCISE 18 GENERAL SENSES
If transduction does not occur, what do you perceive about a stimulus? 1.It is stronger than usual. 2.It is as though the stimulus did not take place and.
Sensory Modalities General Senses: 1. Somatic (Exteroceptors) a. Touch b. Pressure c. Temperature d. Proprioception e. Pain 2. Visceral (Interoceptors)
Sensory Physiology Sensation  Awareness of changes in environment  Changes can be internal or external  How is perception different?  Awareness of.
Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 13 The Peripheral Nervous System (PNS) Part A.
Chapter 12  Touch  Taste  Vision  Hearing  Smell.
Chapter 6A The Peripheral Nervous System: Afferent Divisionhttp:// man_brain.html?gclid=CJroxvfmjaACFVth2godUkI6eA.
Copyright © 2010 Pearson Education, Inc. Marieb Chapter 13 Part A PNS.
Ch 15 Neural integration. General senses 1. temperature 2. pain 3. touch 4. pressure 5. vibration 6. Proprioception - position and movement of the body.
Sensation- conscious (perception) or subconscious awareness of changes in environment.
Sensory Nervous System Week 10 Dr. Walid Daoud A. Professor.
Central Nervous System Introduction The Sensory System.
Physiology of the sensory system
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Physiology of the sensory system
Human Anatomy & Physiology FIFTH EDITION Elaine N. Marieb PowerPoint ® Lecture Slide Presentation by Vince Austin Copyright © 2003 Pearson Education, Inc.
Touch, Vision, Smell, Balance, Hearing
Copyright 2010, John Wiley & Sons, Inc. Chapter 15 Sensory, Motor and Integrative Systems.
Functional Organization of Nervous Tissue Chapter 11
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
PowerPoint ® Lecture Slides prepared by Leslie Hendon, University of Alabama, Birmingham HUMAN ANATOMY fifth edition MARIEB | MALLATT | WILHELM 14 Copyright.
Sensory, Motor, and Integrative Systems
Somatic senses The somatic senses are the nervous mechanisms that collect sensory information from all over the body. These senses are in contradistinction.
Principles of Anatomy and Physiology
The somatic sensory system  Sensory stimuli that reach the conscious level of perception  Somatic senses of touch, temperature, pain, itch and proprioception.
© 2012 Pearson Education, Inc. Chapter 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System.
Copyright © 2010 Pearson Education, Inc. Marieb Chapter 13 Part A PNS Student version.
Sensory Pathways and Sensations Humans can distinguish among many different types of internal and external stimuli because we have highly developed sensory.
Synapse and its types. The Synapse The Synapse Site at which neurons communicate Site at which neurons communicate Signals pass across synapse in one.
General Sensory Reception
Physiology of the sensory system
© 2013 Pearson Education, Inc. Peripheral Nervous System (PNS) Provides links from and to world outside body All neural structures outside brain –Sensory.
The Senses Classification of Sense Organs
Chapter 16 Sensory, Motor, and Integrative Systems.
Chapter 10 Special Senses and Functional Aspects of the Nervous System.
Peripheral Nervous System
Ch 9 Sensory System In order to maintain homeostasis (ie stable internal environment), it is necessary to detect changes in the external environment and.
Sense Receptors Receptor: a simple nerve ending Sense organ: a nerve ending that is connected to tissue to limit or enhance a response Sensory transduction:
Peripheral Nervous System PNS Include the following – Sensory receptors and sensation – Transmission lines the Nerves cranial and spinal – Motor endings.
Anatomy and Physiology
Sensory, Motor, and Integrative Systems
General Senses.
Ch 9 Sensory System In order to maintain homeostasis (ie stable internal environment), it is necessary to detect changes in the external environment and.
What is a sensory receptor?
Sensory Receptors/ Endings/ Organs
Sensory, Motor, and Integrative Systems
Chapter 19A Somatic Senses
What is a sensory receptor?
The Senses: Introduction and Receptors
Sensory and Motor Pathways
Presentation transcript:

Sensory and Motor Pathways Levels and components of sensation Pathways for sensations from body to brain Pathways for motor signals from brain to body

Sensation vs. Perception Sensation is any stimuli the body is aware of Conscious or unconscious awareness What are we not aware of? X-rays, ultra high frequency sound waves, UV light We have no sensory receptors for those stimuli Perception is the conscious awareness & interpretation of a sensation. Function of cerebral cortex memories of our perceptions are stored in cortex No perception of some sensory info because it does not reach cortex

Sensory Modalities Different types of sensations touch, pain, temperature, vibration, hearing, vision Each type of sensory neuron can respond to only one type of stimuli Two classes of sensory modalities general senses somatic are sensations from body walls visceral are sensations from internal organs special senses smell, taste, hearing, vision, and balance

Process of Sensation Sensory receptors demonstrate selectivity respond to only one type of stimuli Events occurring within a sensation stimulation of the receptor transduction (conversion) of stimulus into a graded potential vary in amplitude and are not propagated generation of impulses when graded potential reaches threshold integration of sensory input by the CNS

Sensory Receptors Selectively respond to only one kind of stimuli Have simple or complex structures General Sensory Receptors (Somatic Receptors) no structural specializations in free nerve endings that provide us with pain, tickle, itch, temperatures some structural specializations in receptors for touch, pressure & vibration Special Sensory Receptors (Special Sense Receptors) very complex structures---vision, hearing, taste, & smell

Classification of Sensory Receptors Structural classification Type of response to a stimulus Location of receptors & origin of stimuli Type of stimuli they detect

Structural Classification Compare free nerve ending, encapsulated nerve ending and sensory receptor cell

Classification by Location Exteroceptors near surface of body receive external stimuli hearing, vision, smell, taste, touch, pressure, pain, vibration & temperature Interoceptors monitors internal environment (BV or viscera) not conscious except for pain or pressure Proprioceptors muscle, tendon, joint & internal ear senses body position & movement

Classification by Stimuli Detected Mechanoreceptors detect pressure or stretch touch, pressure, vibration, hearing, proprioception, equilibrium & blood pressure Thermoreceptors detect temperature Nociceptors detect damage to tissues Photoreceptors detect light Chemoreceptors detect molecules taste, smell & changes in body fluid chemistry

Adaptation of Sensory Receptors Change in sensitivity to long-lasting stimuli decrease in responsiveness of a receptor bad smells disappear very hot water starts to feel only warm potential amplitudes decrease during a maintained, constant stimulus Receptors vary in their ability to adapt Rapidly adapting receptors (smell, pressure, touch) adapt quickly; specialized for signaling stimulus changes Slowly adapting receptors (pain, body position) continuation of nerve impulses as long as stimulus persists

Somatic Tactile Sensations Touch crude touch is ability to perceive something has touched the skin discriminative touch provides location and texture of source Pressure is sustained sensation over a large area Vibration is rapidly repetitive sensory signals Itching is chemical stimulation of free nerve endings Tickle is stimulation of free nerve endings only by someone else

Thermal Sensations Free nerve endings with 1mm diameter receptive fields on the skin surface Cold receptors in the stratum basale respond to temperatures between 50-105 degrees F Warm receptors in the dermis respond to temperatures between 90-118 degrees F Both adapt rapidly at first, but continue to generate impulses at a low frequency Pain is produced below 50 and over 118 degrees F.

Pain Sensations Nociceptors = pain receptors Free nerve endings found in every tissue of body except the brain Stimulated by excessive distension, muscle spasm, & inadequate blood flow Tissue injury releases chemicals such as K+, kinins or prostaglandins that stimulate nociceptors Little adaptation occurs

Referred Pain Visceral pain that is felt just deep to the skin overlying the stimulated organ or in a surface area far from the organ. Skin area & organ are served by the same segment of the spinal cord. Heart attack is felt in skin along left arm since both are supplied by spinal cord segment T1-T5

Pain Relief Aspirin and ibuprofen block formation of prostaglandins that stimulate nociceptors Novocaine blocks conduction of nerve impulses along pain fibers Morphine lessen the perception of pain in the brain.

Proprioceptive or Kinesthetic Sense Awareness of body position & movement walk or type without looking estimate weight of objects Sensory information is sent to cerebellum & cerebral cortex from muscle, tendon, joint capsules & hair cells in the vestibular apparatus

Somatic Sensory Pathways First-order neuron conduct impulses to brainstem or spinal cord either spinal or cranial nerves Second-order neurons conducts impulses from spinal cord or brainstem to thalamus--cross over to opposite side before reaching thalamus Third-order neuron conducts impulses from thalamus to primary somatosensory cortex

Posterior Column-Medial Lemniscus Pathway of CNS Somatic Sensory Pathway Posterior Column-Medial Lemniscus Pathway of CNS

Somatic Motor Pathways Control of body movement motor portions of cerebral cortex initiate & control precise movements cerebellum helps make movements smooth & helps maintain posture & balance Somatic motor pathways direct pathway from cerebral cortex to spinal cord & out to muscles indirect pathway includes synapses in thalamus, reticular formation & cerebellum

Motor neuron pathway 1 million upper motor neurons in cerebral cortex 90% of fibers decussate(cross over) in the medulla right side of brain controls left side muscles Terminate on interneurons which synapse on lower motor neurons in either: nuclei of cranial nerves or anterior horns of spinal cord

Details of Motor Pathways