Merge Sort 4/15/2017 6:09 PM The Greedy Method The Greedy Method.

Slides:



Advertisements
Similar presentations
Lecture 7 Paradigm #5 Greedy Algorithms
Advertisements

 Review: The Greedy Method
MCS 312: NP Completeness and Approximation algorithms Instructor Neelima Gupta
Greedy Algorithms.
The Greedy Method1. 2 Outline and Reading The Greedy Method Technique (§5.1) Fractional Knapsack Problem (§5.1.1) Task Scheduling (§5.1.2) Minimum Spanning.
1.1 Data Structure and Algorithm Lecture 6 Greedy Algorithm Topics Reference: Introduction to Algorithm by Cormen Chapter 17: Greedy Algorithm.
Chapter 5 Fundamental Algorithm Design Techniques.
Greedy Algorithms Be greedy! always make the choice that looks best at the moment. Local optimization. Not always yielding a globally optimal solution.
Greedy Algorithms Basic idea Connection to dynamic programming
Greedy Algorithms Basic idea Connection to dynamic programming Proof Techniques.
CS216: Program and Data Representation University of Virginia Computer Science Spring 2006 David Evans Lecture 7: Greedy Algorithms
Cs333/cutler Greedy1 Introduction to Greedy Algorithms The greedy technique Problems explored –The coin changing problem –Activity selection.
Fundamental Techniques CS 5050 Chapter 5 Goal: review complexity analysis Talk of categories used to describe algorithms. 1.
Greedy vs Dynamic Programming Approach
Lecture 7: Greedy Algorithms II Shang-Hua Teng. Greedy algorithms A greedy algorithm always makes the choice that looks best at the moment –My everyday.
© 2004 Goodrich, Tamassia Greedy Method and Compression1 The Greedy Method and Text Compression.
Dynamic Programming1. 2 Outline and Reading Matrix Chain-Product (§5.3.1) The General Technique (§5.3.2) 0-1 Knapsack Problem (§5.3.3)
1 Greedy methods: Lecture 1 Jose Rolim University of Geneva.
© 2004 Goodrich, Tamassia Greedy Method and Compression1 The Greedy Method and Text Compression.
CSE 780 Algorithms Advanced Algorithms Greedy algorithm Job-select problem Greedy vs DP.
ASC Program Example Part 3 of Associative Computing Examining the MST code in ASC Primer.
Fundamental Techniques
Lecture 10 Matroid. Independent System Consider a finite set S and a collection C of subsets of S. (S,C) is called an independent system if i.e., it is.
Lecture 7: Greedy Algorithms II
1 The Greedy Method CSC401 – Analysis of Algorithms Lecture Notes 10 The Greedy Method Objectives Introduce the Greedy Method Use the greedy method to.
9/3/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Guest lecturer: Martin Furer Algorithm Design and Analysis L ECTURE.
Lecture 1: The Greedy Method 主講人 : 虞台文. Content What is it? Activity Selection Problem Fractional Knapsack Problem Minimum Spanning Tree – Kruskal’s Algorithm.
Called as the Interval Scheduling Problem. A simpler version of a class of scheduling problems. – Can add weights. – Can add multiple resources – Can ask.
Dr. Naveed Ahmad Assistant Professor Department of Computer Science University of Peshawar.
Algorithmics - Lecture 101 LECTURE 10: Greedy technique.
5-1-1 CSC401 – Analysis of Algorithms Chapter 5--1 The Greedy Method Objectives Introduce the Brute Force method and the Greedy Method Compare the solutions.
Lecture 19 Greedy Algorithms Minimum Spanning Tree Problem.
GREEDY ALGORITHMS UNIT IV. TOPICS TO BE COVERED Fractional Knapsack problem Huffman Coding Single source shortest paths Minimum Spanning Trees Task Scheduling.
The Greedy Method. The Greedy Method Technique The greedy method is a general algorithm design paradigm, built on the following elements: configurations:
CSC 201: Design and Analysis of Algorithms Greedy Algorithms.
Greedy Algorithms. What is “Greedy Algorithm” Optimization problem usually goes through a sequence of steps A greedy algorithm makes the choice looks.
Dynamic Programming1. 2 Outline and Reading Matrix Chain-Product (§5.3.1) The General Technique (§5.3.2) 0-1 Knapsack Problem (§5.3.3)
CS 3343: Analysis of Algorithms Lecture 19: Introduction to Greedy Algorithms.
Greedy Algorithms Interval Scheduling and Fractional Knapsack These slides are based on the Lecture Notes by David Mount for the course CMSC 451 at the.
Greedy algorithms David Kauchak cs302 Spring 2012.
1 Chapter 16: Greedy Algorithm. 2 About this lecture Introduce Greedy Algorithm Look at some problems solvable by Greedy Algorithm.
Spring 2008The Greedy Method1. Spring 2008The Greedy Method2 Outline and Reading The Greedy Method Technique (§5.1) Fractional Knapsack Problem (§5.1.1)
CS 361 – Chapter 10 “Greedy algorithms” It’s a strategy of solving some problems –Need to make a series of choices –Each choice is made to maximize current.
Divide and Conquer. Problem Solution 4 Example.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 18.
Greedy Algorithms Prof. Kharat P. V. Department of Information Technology.
Greedy Algorithms Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
Problem solving sequence
Greedy Method 6/22/2018 6:57 PM Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.
Merge Sort 7/29/ :21 PM The Greedy Method The Greedy Method.
The Greedy Method and Text Compression
Design & Analysis of Algorithm Greedy Algorithm
The Greedy Method and Text Compression
Greedy Algorithms / Interval Scheduling Yin Tat Lee
Merge Sort 11/28/2018 2:18 AM The Greedy Method The Greedy Method.
The Greedy Method Spring 2007 The Greedy Method Merge Sort
Merge Sort 11/28/2018 2:21 AM The Greedy Method The Greedy Method.
Merge Sort 11/28/2018 8:16 AM The Greedy Method The Greedy Method.
Lecture 11 Overview Self-Reducibility.
Advanced Algorithms Analysis and Design
Greedy Algorithms.
Merge Sort 1/17/2019 3:11 AM The Greedy Method The Greedy Method.
Richard Anderson Lecture 6 Greedy Algorithms
Richard Anderson Autumn 2016 Lecture 7
Lecture 18 CSE 331 Oct 9, 2017.
Richard Anderson Lecture 7 Greedy Algorithms
Algorithm Design Techniques Greedy Approach vs Dynamic Programming
Merge Sort 5/2/2019 7:53 PM The Greedy Method The Greedy Method.
Week 2: Greedy Algorithms
Lecture 19 CSE 331 Oct 10, 2016.
Presentation transcript:

Merge Sort 4/15/2017 6:09 PM The Greedy Method The Greedy Method

Outline and Reading The Greedy Method Technique (§5.1) Fractional Knapsack Problem (§5.1.1) Task Scheduling (§5.1.2) Minimum Spanning Trees (§7.3) [future lecture] The Greedy Method

The Greedy Method Technique The greedy method is a general algorithm design paradigm, built on the following elements: configurations: different choices, collections, or values to find objective function: a score assigned to configurations, which we want to either maximize or minimize It works best when applied to problems with the greedy-choice property: a globally-optimal solution can always be found by a series of local improvements from a starting configuration. The Greedy Method

Making Change Problem: A dollar amount to reach and a collection of coin amounts to use to get there. Configuration: A dollar amount yet to return to a customer plus the coins already returned Objective function: Minimize number of coins returned. Greedy solution: Always return the largest coin you can Example 1: Coins are valued $.32, $.08, $.01 Has the greedy-choice property, since no amount over $.32 can be made with a minimum number of coins by omitting a $.32 coin (similarly for amounts over $.08, but under $.32). Example 2: Coins are valued $.30, $.20, $.05, $.01 Does not have greedy-choice property, since $.40 is best made with two $.20’s, but the greedy solution will pick three coins (which ones?) The Greedy Method

The Fractional Knapsack Problem Given: A set S of n items, with each item i having bi - a positive benefit wi - a positive weight Goal: Choose items with maximum total benefit but with weight at most W. If we are allowed to take fractional amounts, then this is the fractional knapsack problem. In this case, we let xi denote the amount we take of item i Objective: maximize Constraint: The Greedy Method

Example Given: A set S of n items, with each item i having bi - a positive benefit wi - a positive weight Goal: Choose items with maximum total benefit but with weight at most W. 10 ml “knapsack” Solution: 1 ml of 5 2 ml of 3 6 ml of 4 1 ml of 2 Items: 1 2 3 4 5 Weight: 4 ml 8 ml 2 ml 6 ml 1 ml Benefit: $12 $32 $40 $30 $50 Value: 3 4 20 5 50 ($ per ml) The Greedy Method

The Fractional Knapsack Algorithm Greedy choice: Keep taking item with highest value (benefit to weight ratio) Since Run time: O(n log n). Why? Correctness: Suppose there is a better solution there is an item i with higher value than a chosen item j, but xi<wi, xj>0 and vi<vj If we substitute some i with j, we get a better solution How much of i: min{wi-xi, xj} Thus, there is no better solution than the greedy one Algorithm fractionalKnapsack(S, W) Input: set S of items w/ benefit bi and weight wi; max. weight W Output: amount xi of each item i to maximize benefit w/ weight at most W for each item i in S xi  0 vi  bi / wi {value} w  0 {total weight} while w < W remove item i w/ highest vi xi  min{wi , W - w} w  w + min{wi , W - w} The Greedy Method

Task Scheduling Given: a set T of n tasks, each having: A start time, si A finish time, fi (where si < fi) Goal: Perform all the tasks using a minimum number of “machines.” 1 9 8 7 6 5 4 3 2 Machine 1 Machine 3 Machine 2 The Greedy Method

Task Scheduling Algorithm Greedy choice: consider tasks by their start time and use as few machines as possible with this order. Run time: O(n log n). Why? Correctness: Suppose there is a better schedule. We can use k-1 machines The algorithm uses k Let i be first task scheduled on machine k Machine i must conflict with k-1 other tasks But that means there is no non-conflicting schedule using k-1 machines Algorithm taskSchedule(T) Input: set T of tasks w/ start time si and finish time fi Output: non-conflicting schedule with minimum number of machines m  0 {no. of machines} while T is not empty remove task i w/ smallest si if there’s a machine j for i then schedule i on machine j else m  m + 1 schedule i on machine m The Greedy Method

Example Given: a set T of n tasks, each having: A start time, si A finish time, fi (where si < fi) [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start) Goal: Perform all tasks on min. number of machines Machine 3 Machine 2 Machine 1 1 2 3 4 5 6 7 8 9 The Greedy Method