Quantum random walks Andre Kochanke Max-Planck-Institute of Quantum Optics 7/27/2011.

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

Quantum algorithms in the presence of decoherence: optical experiments Masoud Mohseni, Jeff Lundeen, Kevin Resch and Aephraim Steinberg Department of Physics,
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Entropy in the Quantum World Panagiotis Aleiferis EECS 598, Fall 2001.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
On Quantum Walks and Iterated Quantum Games G. Abal, R. Donangelo, H. Fort Universidad de la República, Montevideo, Uruguay UFRJ, RJ, Brazil.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Preventing Disentanglement by Symmetry Manipulations G. Gordon, A. Kofman, G. Kurizki Weizmann Institute of Science, Rehovot 76100, Israel Sponsors: EU,
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Phase Transition in Ultracold bosonic atoms Bhanu Pratap Das Indian Institute of Astrophysics Bangalore.
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.
Autoionization of strontium Rydberg states
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Circular statistics Maximum likelihood Local likelihood Kenneth D. Harris 4/3/2015.
Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Experimental Realization of Shor’s Quantum Factoring Algorithm ‡ ‡ Vandersypen L.M.K, et al, Nature, v.414, pp. 883 – 887 (2001) M. Steffen 1,2,3, L.M.K.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Single atom lasing of a dressed flux qubit
Weak Values in Quantum Measurement Theory - Concepts and Applications - Yutaka Shikano 07M01099 Department of Physics, Tokyo Institute of Technology “Master.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Quantum Computing Paola Cappellaro
Quantum Dense coding and Quantum Teleportation
What is Qu antum In formation and T echnology? Prof. Ivan H. Deutsch Dept. of Physics and Astronomy University of New Mexico Second Biannual Student Summer.
Decoherence in Phase Space for Markovian Quantum Open Systems Olivier Brodier 1 & Alfredo M. Ozorio de Almeida 2 1 – M.P.I.P.K.S. Dresden 2 – C.B.P.F.
Build Your Own Quantum Computer for Fun and Profit!
“Experimental quantum computers” or, the secret life of experimental physicists 1 – Qubits in context Hideo Mabuchi, Caltech Physics and Control & Dynamical.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Phase space, decoherence and the Wigner function for finite dimensional systems. James Yearsley Superviser: Prof. JJ Halliwell. See: Gibbons et. al. quant-ph/
Efficient measure of scalability Cecilia López, Benjamin Lévi, Joseph Emerson, David Cory Department of Nuclear Science & Engineering, Massachusetts Institute.
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
Unraveling Entanglement O. Brodier M. Busse, C. Viviescas, A. R. R. Carvalho, A. Buchleitner M.P.I.P.K.S. Nöthnitzer Str. 38, D DRESDEN, ALLEMAGNE.
Goren Gordon, Gershon Kurizki Weizmann Institute of Science, Israel Daniel Lidar University of Southern California, USA QEC07 USC Los Angeles, USA Dec.
Quantum Computing: An Overview for non-specialists Mikio Nakahara Department of Physics & Research Centre for Quantum Computing Kinki University, Japan.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Mesoscopic Physics Introduction Prof. I.V.Krive lecture presentation Address: Svobody Sq. 4, 61022, Kharkiv, Ukraine, Rooms. 5-46, 7-36, Phone: +38(057)707.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
An Introduction to Quantum Computation Sandy Irani Department of Computer Science University of California, Irvine.
Spectral Diffusion (in Rare-Earth-Doped Materials) Aislinn Daniels Spectrum Lab Seminar Fall 2015 Spectrum Lab Montana State University.
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
CARMA Models for Stochastic Variability (or how to read a PSD) Jim Barrett University of Birmingham.
Prebunching electron beam and its smearing due to ISR-induced energy diffusion Nikolai Yampolsky Los Alamos National Laboratory Fermilab; February 24,
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 An Introduction to Quantum Computing Sabeen Faridi Ph 70 October 23, 2007.
Quantum Shift Register Circuits Mark M. Wilde arXiv: National Institute of Standards and Technology, Wednesday, June 10, 2009 To appear in Physical.
Tunable excitons in gated graphene systems
Maximally Multipartite Entangled States and Statistical Mechanics
Improving Measurement Precision with Weak Measurements
Anderson localization of weakly interacting bosons
Coupled atom-cavity system
Classical World because of Quantum Physics
Quantum State and Process Measurement and Characterization
An Introduction to Quantum Mechanics through Random Walks
Quantum phase magnification
by Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L
Presentation transcript:

Quantum random walks Andre Kochanke Max-Planck-Institute of Quantum Optics 7/27/2011

Motivation 2

3 ? ? ? ? ? ? ? ?

Overview Density matrix formalism Randomness in quantum mechanics Transition from classical to quantum walks Experimental realisation 4

Density matrix approach Two state system 5 1 0

Density matrix approach Two state system Density operator 6 0 1

Density matrix approach Density operator 7 Pure stateMixed state 0 1

Galton box 8 Binomial distribution

Galton box Statistical mixture First four steps 9

Quantum analogy Used Hilbert space Specify subspaces

Quantum analogy Evolution with shift and coin operators

Quantum analogy Evolution with shift and coin operators

Quantum analogy Evolution with shift and coin operators

Quantum analogy State transformation Density matrix transformation 14

Quantum analogy 15

Quantum analogy 16 Position pcpqpcpq Variances pcpqpcpq pcpqpcpq Position 100 steps

Phase shift Transformed density matrix Average Decoherence effect Decoherence 17

Different realisations C. A. Ryan et al., “Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”, PRA 72, (2005) M. Karski et al., “Quantum Walk in Position Space with Single Optically Trapped Atoms”, Science 325, 174 (2009) A. Schreiber et al., “Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations”, PRL 104, (2010) F. Zähringer et al., “Realization of a Quantum Walk with One and Two Trapped Ions”, PRL 104, (2010) 18

Setup 19 CCD Microwave Dipole trap laser Objective Fluorescence picture Cs Microwave M. Karski et al., Science 325, 174 (2009)

Setup 20

Setup 21

Results 22 M. Karski et al., Science 325, 174 (2009)

Results 23 M. Karski et al., Science 325, 174 (2009) Theoretical expectation 6 steps

Results 24 Theoretical expectation M. Karski et al., Science 325, 174 (2009) 6 steps

Results 25 Theoretical expectation

Results 26 Theoretical expectation M. Karski et al., Science 325, 174 (2009)

Results 27 Gaussian fit M. Karski et al., Science 325, 174 (2009)

Conclusion The density matrix formalism allows you to describe cassical and quantum behavior Karski et al. showed how to prepare a quantum walk with delocalized atoms The quantum random walk is not random at all 28 M. Karski et al., Science 325, 174 (2009)

29

References C. A. Ryan et al., “Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”, PRA 72, (2005) M. Karski et al., “Quantum Walk in Position Space with Single Optically Trapped Atoms”, Science 325, 174 (2009) SOM for “Quantum Walk in Position Space with Single Optically Trapped Atoms”, Science 325, 174 (2009) A. Schreiber et al., “Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations”, PRL 104, (2010) F. Zähringer et al., “Realization of a QuantumWalk with One and Two Trapped Ions”, PRL 104, (2010) M. Karksi, „State-selective transport of single neutral atoms”, Dissertation, Bonn (2010) C. C. Gerry and P. L. Knight, „Introductory Quantum Optics“, Cambridge University Press, Cambridge (2005) M. A. Nielsen and I. A. Chuang, „Quantum Computation and Quantum Information“, Cambridge University Press, Cambridge (2000) 30