SINGLE TRAIT PUNNETT SQUARE

Slides:



Advertisements
Similar presentations
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Advertisements

Gregor Mendel “Give peas a chance!”
Gregor Mendel Monk and Scientist Father of Genetics  In 1843, at the age of 21, Gregor Mendel entered the monastery.  Born in what is now known as.
Chapter 5 Lesson 1 Mendel and His Peas.
Genetics Feb. 23, 2010.
Gregor Mendel w “The Father of Genetics” w Studied peas: easy and quick to breed, can control mating.
8 th Grade Science Genetics DNA A = Adenine T = Thymine C = Cytosine G = Guanine.
Genetics: The Science of Heredity
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel.
Genetics Chapter 7 Mr. Femia Biology Mr. Femia Biology.
Mendelian Genetics. Genetics and heredity For a long time, general ideas of inheritance were known ++ =
Mendel Biology Chapter 10.1 p
Mendel & the Origins of Genetics
A. History of Heredity Studies 1)Gregor Mendel is considered the father of genetics. 2)He performed experiments on pea plants to find out why living.
The Father of Heredity. Gregor Mendel Synonym for “Trait”
SINGLE TRAIT PUNNETT SQUARE
SINGLE TRAIT PUNNETT SQUARE Tt T t T t ¼ Punnett Squares.
Genetics. Heredity – characteristics inherited from parents to offspring through genes Genetics - The study of genes and heredity.
Gregor Mendel Austrian Monk The Father of Modern Genetics.
Introduction to Genetics Chapter 11. What is genetics?  Genetics is the scientific study of heredity.
GENETICS AND HEREDITY   genes found on chromosomes in the nucleus of a cell, code for the inherited characteristics we call traits   the passing of.
Life Science Genetics.
Mendelian Genetics The Basics. Gregor Mendel Mendel was an Austrian monk who published his research on the inheritance of pea plant characteristics in.
HEREDITY Heredity: the passing of traits from parents to offspring. Trait: Trait: A physical or behavioral characteristic that describes an organism (Ex:
Inheritance of Traits.
Mendel: Understanding Inheritance Gregor Mendel “The father of genetics”
Punnett Squares: Dominant & Recessive Traits. Gregor Mendel is often called the “Father of Genetics”.
Gregor Mendel: known in the science world as “THE FATHER OF GENETICS”. - laid the foundations for the SCIENCE OF GENETICS through his study of inheritance.
GENETICS PUNNETT SQUARES Tt T t T t. TOOLS TO KNOW A PUNNET SQUARE IS A TOOL USED TO PREDICT THE POSSIBLE GENOTYPES FOR THE OFFSPRING OF TWO KNOWN PARENTS.
The Work of Mendel. Heredity: the passing of traits from parents to offspring Genetics: Study of heredity Traits -inherited characteristics.
INTRO TO GENETICS. GREGOR MENDEL Known as the Father of Genetics Studied pea plants and discovered the basics of heredity and genetics.
Gregor Mendel w The basic laws of heredity were first formed during the mid- 1800’s by an Austrian botanist monk named Gregor Mendel. Because his work.
The study of inheritance of traits.  Austrian Monk  Studied how traits were passed from parent to offspring  His ideas forms the foundation for the.
Heredity is the passing of characteristics from parents to offspring Trait – a characteristic that is inherited Example: –Hair color is a characteristic.
The Blending Hypothesis A Trait is a variation of a particular characteristic such as tall and short In the early 1800’s many biologists believed in the.
Mendel, Probability & Heredity. GREGOR MENDEL “The Father of Genetics” Genetics: The study of heredity. Heredity: The passing of genes/characteristics.
POINT > Review some genetics vocabulary POINT > Define genotype and phenotype POINT > Define homozygous and heterozygous POINT > Use a Punnett Square.
MIDDLE SCHOOL GENETICS
SINGLE TRAIT PUNNETT SQUARE
Genetics.
INTRO TO PUNNETT SQUARES
Mendel, Heredity and Punnett Squares
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Mendelian Genetics Ch. 5 Sec.1 and 2.
Punnett Square Notes.
Genetics: The Study of Heredity
Genetics Gregor Mendel *The father of genetics.
TOOLS TO KNOW PARENT’S GENES
Mendelian Genetics Ch. 5 Sec.1 and 2.
MIDDLE SCHOOL GENETICS
Heredity and Punnett Squares
Today 1/25 Take a seat..
MIDDLE SCHOOL GENETICS
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Unit 3: Genetics Biology 30.
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
SINGLE TRAIT PUNNETT SQUARE
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Genetics GENETICS.
Genetics A study of inheritance.
Heredity.
6.3 Mendel and Heredity Gregor Mendel
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
How We Came to Be 1/20/2015 Entry 2.
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Genetics Using Punnett Squares
Predicting genetic outcomes
Mendelian Genetics Ch. 5 Sec.1 and 2.
Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid.
Presentation transcript:

SINGLE TRAIT PUNNETT SQUARE GENETICS SINGLE TRAIT PUNNETT SQUARE ¼

STUDENT EXPECTATION 7-2.6 STUDENTS WILL MAKE PREDICTIONS ABOUT POSSIBLE OUTCOMES OF VARIOUS GENETIC COMBINATIONS OF INHERITED CHARACTERISTICS T t TT Tt T T

HIGHLIGHT OF OBJECTIVE 2 SINGLE-TRAIT PUNNETT SQUARES MAY BE USED, AND STUDENTS WILL BE EXPECTED TO PREDICT GENETIC OUTCOMES. ¾ 75% 3:1

Gregor Mendel The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid the foundation to the study of heredity, Mendel is referred to as “The Father of Genetics.”

Mendel’ Pea Plants Mendel based his laws on his studies of garden pea plants. Mendel was able to observe differences in multiple traits over many generations because pea plants reproduce rapidly, and have many visible traits such as: Pod color Seed Color Plant Height Green Yellow Green Yellow Seed Shape Short Pod Shape Tall Wrinkled Round Smooth Pinched

Mendel’s Experiments Mendel noticed that some plants always produced offspring that had a form of a trait exactly like the parent plant. He called these plants “purebred” plants. For instance, purebred short plants always produced short offspring and purebred tall plants always produced tall offspring. X Short Offspring Purebred Short Parents X Purebred Tall Parents Tall Offspring

Mendel’s First Experiment Mendel crossed purebred plants with opposite forms of a trait. He called these plants the parental generation , or P generation. For instance, purebred tall plants were crossed with purebred short plants. X Parent Short P generation Parent Tall P generation Offspring Tall F1 generation Mendel observed that all of the offspring grew to be tall plants. None resembled the short short parent. He called this generation of offspring the first filial , or F1 generation, (The word filial means “son” in Latin.)

Mendel’s Second Experiment Mendel then crossed two of the offspring tall plants produced from his first experiment. Parent Plants Offspring X Tall F1 generation 3⁄4 Tall & 1⁄4 Short F2 generation Mendel called this second generation of plants the second filial, F2, generation. To his surprise, Mendel observed that this generation had a mix of tall and short plants. This occurred even though none of the F1 parents were short.

TOOLS TO KNOW PARENT’S GENES A PUNNET SQUARE IS A TOOL USED TO PREDICT THE POSSIBLE GENOTYPES FOR THE OFFSPRING OF TWO KNOWN PARENTS. PARENT’S GENES

T,t TT, tt Tt, Gg TERMS TO KNOW ALLELES HOMOZYGOUS HETEROZYGOUS DIFFERENT FORMS OF A TRAIT THAT A GENE MAY HAVE T,t HOMOZYGOUS AN ORGANISM WITH TWO ALLELES THAT ARE THE SAME TT, tt HETEROZYGOUS AN ORGANISM WITH TWO DIFFERENT ALLELES FOR A TRAIT Tt, Gg

Tt, Gg T OR G t or g TERMS TO KNOW HYBRID DOMINANT RECESSIVE SAME AS HETEROZYGOUS Tt, Gg DOMINANT A TRAIT THAT DOMINATES OR COVERS UP THE OTHER FORM OF THE TRAIT REPRESENTED BY AN UPPERCASE LETTER T OR G RECESSIVE THE TRAIT BEING DOMINATED OR COVERED UP BY THE DOMINATE TRAIT REPRESENTED BY A LOWER CASE LETTER t or g

TERMS TO KNOW PHENOTYPE TALL, SHORT, GREEN, WRINKLED GENOTYPE THE PHYSICAL APPEARANCE OF AN ORGANISM (WHAT IT LOOKS LIKE) TALL, SHORT, GREEN, WRINKLED GENOTYPE THE GENE ORDER OF AN ORGANISM (WHAT ITS GENES LOOK LIKE) TT, GG, Tt, gg Gg, tt RATIO THE RELATIONSHIP IN NUMBERS BETWEEN TWO OR MORE THINGS 3:1, 2:2, 1:2:1

HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE THE PARENTS’ ALLELES GO ON THE OUTSIDE OF THE SQUARE B B BB X bb b b

HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE THE PARENTS’ ALLELES GO ON THE OUTSIDE OF THE SQUARE DROP THE LETTERS ON THE TOP, INTO EACH SQUARE B B b B b B b MOVE EACH LETTER ON THE SIDE, INTO EACH SQUARE b THE ORDER DOES NOT MATTER IN THE BOXES, BUT UPPERCASE FIRST IS A GOOD RULE B b B b

HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE WHAT DO THE RESULTS SHOW? RESULTS: B B PHENOTYPIC: 100% BLACK 4:0 RATIO, BLACK TO BROWN IF B IS THE DOMINANT ALLELE FOR BLACK b Bb Bb AND b IS THE RECESSIVE ALLELE FOR BROWN GENOTYPIC: 100% Bb 4:0 ALL Bb b Bb Bb THEN WE CAN MAKE PREDICTIONS ABOUT THE OUTCOMES

HOW TO USE A PUNNETT SQUARE WHAT ARE THE RESULTS? LET’S LOOK AT ANOTHER PUNNETT SQUARE AND PREDICT THE OUTCOME T t PHENOTYPIC: 75% TALL 25% SHORT 3 TO 1 RATIO: TALL TO SHORT T T T T t T IS THE DOMINANT ALLELE FOR TALLNESS GENOTYPIC: 1TT: 2Tt: 1tt 1:2:1 RATIO 25 %TT, 50% Tt, 25% tt t T t t t t IS THE RECESSIVE ALLELE FOR SHORTNESS

PRACTICAL APPLICATION OF PUNNETT SQUARES THE ALLELES OF A PARTICULAR SPECIES OF DOG CAN BE EITHER D (NORMAL HEIGHTH) OR d (DWARF). THE HETEROZYGOUS (Dd) AND HOMOZYGOUS DOMINANT (DD) FORM OF THIS DOG LOOK THE SAME (TALL). IF YOU FOUND A STRAY DOG OF THIS BREED, HOW COULD YOU DETERMINE ITS GENOTYPE?

PRACTICAL APPLICATION OF PUNNETT SQUARES COULD A DOG BE CROSSED WITH ANOTHER DOG TO DETERMINE IF HE WAS PUREBRED FOR TALLNESS? WHAT GENOTYPE SHOULD THE DOG HAVE THAT IS BEING USED FOR THE CROSS?

PRACTICAL APPLICATION OF PUNNETT SQUARES D D IF THE DOG IS PUREBRED (DD), IT DOESN’T MATTER WHAT YOU CROSS IT WITH, THE OFFSPRING WILL ALWAYS LOOK LIKE THE DOMINANT. DD DD D D DD DD D D D D D DD DD d Dd Dd d d Dd Dd Dd Dd

PRACTICAL APPLICATION OF PUNNETT SQUARES WHAT WOULD BE THE MOST EFFECTIVE CROSS FOR DETERMINING IF THE DOG IS HETEROZYGOUS (Dd) ? CROSSING IT WITH A PUREBRED (DD) WILL NOT HELP. WHAT WOULD THE RESULTS BE IF YOU CROSSED IT WITH ANOTHER HETEROZYGOUS? WHAT WOULD THE RESULTS BE IF YOU CROSSED IT WITH A HOMOZYGOUS RECESSIVE (dd)? D d D d D DD Dd d Dd dd d d Dd dd Dd dd

PRACTICAL APPLICATION OF PUNNETT SQUARES D d D d D DD Dd d Dd dd d Dd dd d Dd dd THE HETEROZYGOUS CROSS WOULD ONLY GIVE YOU A 25% CHANCE OF THE RECESSIVE TRAIT APPEARING. THE MOST EFFECTIVE CROSS WAS USING THE HOMOZYGOUS RECESSIVE. THIS WOULD GIVE A 50% CHANCE OF THE RECESSIVE TRAIT APPEARING. THIS PROCESS IS CALLED A TEST CROSS. IN A LITTER OF DOGS, IF A RECESSIVE DOG APPEARS, THEN YOU KNOW THAT THE ORIGINAL DOG WAS NOT A PUREBRED.

TAKS FORMATTED ITEMS ANSWER: 50% IN DROSOPHILA MELANOGASTER (FRUIT FLIES), RED EYE COLOR (R) IS DOMINANT OVER BROWN EYE COLOR (r). IF THE FLIES IN THE PICTURE WERE CROSSED, WHAT PERCENT OF THEIR OFFSPRING WOULD BE EXPECTED TO HAVE BROWN EYES? ANSWER: 50%

TAKS FORMATTED ITEMS H h H 4 1 h 3 2 WHICH OF THE FOLLOWING HAS THE hh GENOTYPE? 1 & 3 2 4 NONE H 4 1 h 3 2 2. WHICH OF THE FOLLOWING IS A TRUE STATEMENT? INDIVIDUAL 4 IS RECESSIVE INDIVIDUALS 1 & 3 ARE HETEROZYGOUS INDIVIDUAL 2 IS DOMINANT ALL INDIVIDUALS ARE FEMALE

TAKS FORMATTED ITEMS B b B BB Bb b Bb bb 3. IF B IS THE ALLELE FOR BLACK FUR AND b IS THE ALLELE FOR WHITE FUR, WHAT PERCENT WOULD BE BLACK? 25% 50% 100% 75% B BB Bb b Bb bb 4. WHAT FRACTION IS HOMOZYGOUS DOMINANT IN THE ABOVE CROSS? 1/2 1/4 1/3 3/4

TAKS FORMATTED ITEMS B B B BB BB b Bb Bb 5. IN THIS CROSS, WHAT IS THE RATIO OF BB TO Bb? 3 : 1 4 : 1 2 : 2 0 : 4 B BB BB b Bb Bb