QUEUING MODELS Based on slides for Hilier, Hiller, and Lieberman, Introduction to Management Science, Irwin McGraw-Hill.

Slides:



Advertisements
Similar presentations
Components of the Queuing System
Advertisements

Waiting Line Management
Chapter 5: Service Processes
LESSONs NINE and TEN QUEUING MODELS.
McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Where is There Waiting? Service Facility –Fast-food restaurants –Post office –Grocery store.
Readings Readings Chapter 11, Sections 1, 2, 3, 5 Waiting Line Models.
Waiting Lines Example-1
1 Waiting Lines Also Known as Queuing Theory. 2 Have you ever been to the grocery store and had to wait in line? Or maybe you had to wait at the bank.
D Waiting-Line Models PowerPoint presentation to accompany
Queuing Models Basic Concepts
Model Antrian By : Render, ect. Outline  Characteristics of a Waiting-Line System.  Arrival characteristics.  Waiting-Line characteristics.  Service.
Waiting Lines and Queuing Theory Models
© The McGraw-Hill Companies, Inc., Technical Note 6 Waiting Line Management.
Queuing Systems Chapter 17.
Chapter 2: The Process View of an Organization
Waiting Line Models And Service Improvement
Chapter 13 Queuing Theory
D – 1 Operations Management Module D – Waiting-Line Models © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render Principles of.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 14-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 14.
Management of Waiting Lines
Waiting lines problems
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 16 Waiting Line Models and.
Waiting line Models.
To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 14-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 14.
Operations Management Waiting-Line Models Module D
QUEUING MODELS Queuing theory is the analysis of waiting lines It can be used to: –Determine the # checkout stands to have open at a store –Determine the.
Chapter 9: Queuing Models
WAITING LINES The study of waiting lines, called queuing theory, is one of the most widely used and oldest management science techniques. The three basic.

Queuing Theory (Waiting Line Models)
Spreadsheet Modeling & Decision Analysis
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Waiting Line Analysis for Service Improvement Operations Management.
Operations Management
Introduction to Management Science
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc., All Rights Reserved. Waiting Line Models.
Introduction to Queuing Theory
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Service Processes CHAPTER 5.
Management of Waiting Lines McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
4/11: Queuing Models Collect homework, roll call Queuing Theory, Situations Single-Channel Waiting Line System –Distribution of arrivals –Distribution.
Queuing Models. © 2002 Prentice-Hall, IncCh 9-2 Stay in Queue: Short Video &feature=related
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
1 Queuing Analysis Overview What is queuing analysis? - to study how people behave in waiting in line so that we could provide a solution with minimizing.
Ch 6 Tech Notes OBJECTIVES
1-1 McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved 1 Chapter 8A Waiting Line Management.
Queueing Theory What is a queue? Examples of queues: Grocery store checkout Fast food (McDonalds – vs- Wendy’s) Hospital Emergency rooms Machines waiting.
1 Systems Analysis Methods Dr. Jerrell T. Stracener, SAE Fellow SMU EMIS 5300/7300 NTU SY-521-N NTU SY-521-N SMU EMIS 5300/7300 Queuing Modeling and Analysis.
Waiting Lines and Queuing Models. Queuing Theory  The study of the behavior of waiting lines Importance to business There is a tradeoff between faster.
Chapter 16 Capacity Planning and Queuing Models
Components of the Queuing System
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Waiting Line Analysis for Service Improvement Operations Management.
Waiting Lines and Queuing Theory Models
Technical Supplement 2 Waiting Line Models McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Structure of a Waiting Line System Queuing theory is the study of waiting lines Four characteristics of a queuing system: –The manner in which customers.
Queuing Models.
Simple Queueing Theory: Page 5.1 CPE Systems Modelling & Simulation Techniques Topic 5: Simple Queueing Theory  Queueing Models  Kendall notation.
1 BIS 3106: Business Process Management (BPM) Lecture Nine: Quantitative Process Analysis (2) Makerere University School of Computing and Informatics Technology.
Queueing Theory/Waiting Line: Models and Analysis Navneet Vidyarthi
Topic VI. Multiple-Channel Queuing Model (Limited queue length system)
Abu Bashar Queuing Theory. What is queuing ?? Queues or waiting lines arise when the demand for a service facility exceeds the capacity of that facility,
Managerial Decision Making Chapter 13 Queuing Models.
Module D Waiting Line Models.
© 2006 Prentice Hall, Inc.D – 1 Operations Management Module D – Waiting-Line Models © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
18 Management of Waiting Lines
McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved
Management of Waiting Lines
Chapter 9: Queuing Models
Waiting Line Models Waiting takes place in virtually every productive process or service. Since the time spent by people and things waiting in line is.
Queuing Models J. Mercy Arokia Rani Assistant Professor
Presentation transcript:

QUEUING MODELS Based on slides for Hilier, Hiller, and Lieberman, Introduction to Management Science, Irwin McGraw-Hill

Queuing Theory Waiting occurs in Service facility  Fast-food restaurants  post office  grocery store  bank Manufacturing Equipment awaiting repair Phone or computer network Product orders Why is there waiting?

System Characteristics Number of servers Arrival and service pattern Queue discipline

Measures of System Performance Average number of customers waiting Average time customers wait System utilization

Number of Servers Single Server Multiple Servers Multiple Single Servers

Some Assumptions Arrival Pattern: Poisson Service pattern: exponential Queue Discipline: FIFO

Some Models 1. Single server, exponential service time (M/M/1) 2. Multiple servers, exponential service time (M/M/s) A Taxonomy A / B / s ArrivalServiceNumber of DistributionDistributionServers where M = exponential distribution (“Markovian”) D = deterministic (constant) G = general distribution

Given =customer arrival rate  =service rate (1/m = average service time) s=number of servers Calculate L q =average number of customers in the queue L=average number of customers in the system W q =average waiting time in the queue W=average waiting time (including service) P n =probability of having n customers in the system  =system utilization

Model 1: M/M/1 Example The reference desk at a library receives request for assistance at an average rate of 10 per hour (Poisson distribution). There is only one librarian at the reference desk, and he can serve customers in an average of 5 minutes (exponential distribution). What are the measures of performance for this system?

Model 2: M/M/s Example The Federal Bank of Washington has three tellers at their Seattle branch. Customers arrive randomly at the branch at an average rate of 1 per minute. The service time averages 2 minutes, and follows the exponential distribution. What are the measures of performance?

Application of Queuing Theory We can use the results from queuing theory to make the following types of decisions: How many servers to employ Whether to use one fast server or a number of slower servers Whether to have general purpose or faster specific servers Goal: Minimize total cost = cost of servers + cost of waiting

Example #1: How Many Servers? In the service department of an auto repair shop, mechanics requiring parts for auto repair present their request forms at the parts department counter. A parts clerk fills a request while the mechanics wait. Mechanics arrive at an average rate of 40 per hour (Poisson). A clerk can fill requests in 3 minutes (exponential). If the parts clerks are paid $6 per hour and the mechanics are paid $18 per hour, what is the optimal number of clerks to staff the counter.

So s = 4 has the smallest total cost.

Example #2: How Many Servers? Beefy Burgers is trying to decide how many registers to have open during their busiest time, the lunch hour. Customers arrive during the lunch hour at a rate of 98 customers per hour (Poisson distribution). Each service takes an average of 3 minutes (exponential distribution). Management would not like the average customer to wait longer than five minutes in the system. How many registers should they open?

For five servers

Choose s = 6 since W = hour is less than 5 minutes. For six servers

Example #3: One Fast Server or Many Slow Servers? Beefy Burgers is considering changing the way that they serve customers. For most of the day (all but their lunch hour), they have three registers open. Customers arrive at an average rate of 50 per hour. Each cashier takes the customer’s order, collects the money, and then gets the burgers and pours the drinks. This takes an average of 3 minutes per customer (exponential distribution). They are considering having just one cash register. While one person takes the order and collects the money, another will pour the drinks and another will get the burgers. The three together think they can serve a customer in an average of 1 minute. Should they switch to one register?

3 Slow Servers 1 Fast Server W is less for one fast server, so choose this option.

Example 4: Southern Railroad The Southern Railroad Company has been subcontracting for painting of its railroad cars as needed. Management has decided the company might save money by doing the work itself. They are considering two alternatives. Alternative 1 is to provide two paint shops, where painting is to be done by hand (one car at a time in each shop) for a total hourly cost of $70. The painting time for a car would be 6 hours on average (assume an exponential painting distribution) to paint one car. Alternative 2 is to provide one spray shop at a cost of $175 per hour. Cars would be painted one at a time and it would take three hours on average (assume an exponential painting distribution) to paint one car. For each alternative, cars arrive randomly at a rate of one every 5 hours. The cost of idle time per car is $150 per hour. Estimate the average waiting time in the system saved by alternative 2. What is the expected total cost per hour for each alternative? Which is the least expensive? Answer: Alt 2 saves 1.87 hours. Cost of Alt 1 is: $ / hour and cost of Alt 2 is $ /hour.