Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,

Slides:



Advertisements
Similar presentations
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Status Report: Sensors for the ILC Konstantin Stefanov CCLRC Rutherford Appleton Laboratory.
Advertisements

Wieman: 1 LBNL Micro-vertex STAR Collaboration Meeting Aug 2003 LBNL Howard Wieman, Fred Bieser, Robin Gareus (Heidelberg), Howard Matis, Marcus Oldenburg,
1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
First results from the HEPAPS4 Active Pixel Sensor
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
STAR upgrade workshop, Yale, Jun , People: F. Bieser, R. Gareus, L. Greiner, H. Matis, M. Oldenburg, F. Retiere, H.G. Ritter, K.S., A. Shabetai(IReS),
Charge-Coupled Device (CCD)
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
CLIC Collaboration Working Meeting: Work packages November 3, 2011 R&D on Detectors for CLIC Beam Monitoring at LBNL and UCSC/SCIPP Marco Battaglia.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Wieman: 1 LBNL Status and R&D plans for the STAR Microvertex Detector Development 22-Nov-03 LBNL Fred Bieser, Robin Gareus (Heidelberg), Leo Greiner, Howard.
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Fine Pixel CCD Option for the ILC Vertex Detector
Development of CCDs and Relevant Electronics for the X-ray CCD camera of the MAXI Experiment onboard the International Space Station Osaka University E.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
LCFI Collaboration Status Report LCUK Meeting Oxford, 29/1/2004 Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, QMUL,
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
Leo Greiner TC_Int1 Sensor and Readout Status of the PIXEL Detector.
Silicon Sensors for Collider Physics from Physics Requirements to Vertex Tracking Detectors Marco Battaglia Lawrence Berkeley National Laboratory, University.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
I n s t i t u t e of H i g h E n e r g y P h y s i c s И н с т и т у т Ф и з и к и В ы с о к и х Э н е р г и й Influence of cooling on the working parameters.
Vertex Detector for GLD 3 Mar Y. Sugimoto KEK.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
J. Crooks STFC Rutherford Appleton Laboratory
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
PIXEL Slow Simulation Xin Li 3/16/2008. CMOS Active Pixel Sensor (APS) Epitaxy is a kind of interface between a thin film and a substrate. The term epitaxy.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 3 Paul Dauncey, Imperial College London.
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
R&D Plan in FY2003 Vertex Detector Subgroup Y. Sugimoto 11 Apr
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
1 Performance of a CCD tracker at room temperature T. Tsukamoto (Saga Univ.) T. Kuniya, H. Watanabe (Saga Univ.); A. Miyamoto, Y. Sugimoto (KEK); S. Takahashi,
Upgrade with Silicon Vertex Tracker Rachid Nouicer Brookhaven National Laboratory (BNL) For the PHENIX Collaboration Stripixel VTX Review October 1, 2008.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Hybrid CMOS strip detectors J. Dopke for the ATLAS strip CMOS group UK community meeting on CMOS sensors for particle tracking , Cosenors House,
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
First Testbeam results
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
SCIENTIFIC CMOS PIXELS
HVCMOS Detectors – Overview
FPCCD Vertex Detector for ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Measure Tracks decay from heavy flavor mesons
TCAD Simulation and test setup For CMOS Pixel Sensor based on a 0
Beam Test Results for the CMS Forward Pixel Detector
Status of CCD Vertex Detector R&D for GLC
Presentation transcript:

Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder, K. Singh, UCI H. Bichel, U. Washington

H. Matis STAR Needs a Thin Vertex Detector to Measure Charm at RHIC High precision - ~4 µm resolution Low mass - 1 GeV/c particles - need low multiple scattering Medium radiation environment - 50 krad/y 40x RHIC luminosity 40 µm 80 µm 160 µm320 µm 640 µm

H. Matis Active Pixel Sensor (APS) – Attractive Technology Has same advantages of CCDs –Small pixels –Can thin wafers Plus –Standard CMOS process –More radiation resistant –Low power –Put extra circuits on chip Minus –New Technology –Lots to learn

H. Matis Epitaxial Sensor Medium High-resistivity epitaxial silicon used as a sensor Higher doped P bulk reflects and confines electrons Slower, more lateral diffusion and recombination 100% fill factor achieved

H. Matis CMOS APS with Epitaxial Sensor

H. Matis Three Example CMOS Pixel Circuits Passive Pixel Sensor (PPS, left) Active Pixel Sensor (APS, middle) APS with sample and hold / shutter (right)

H. Matis “ EPI-1” Prototype Epi / APS Imager 0.25 µm CMOS 128 x 128 array 4 pixel variants 20 x 20 µm pixels 8-10 µm Epi Fabbed at TSMC

H. Matis 4 Configurations 4 variants: –Small pickup –4x small pickups –Small pickup + direct injection –Large pickup + Direct injection

H. Matis APS Pixel Quadrants

H. Matis Sr 90 Electron Source Quadrant of 64 x 64 pixels with (left) and without (right) Sr 90 source applied.

H. Matis 1.5 GeV electron source (ALS) Quadrant with (left) and without (right) electron source applied.

H. Matis Energy spectrum of 1.5 GeV electrons Circles are measured points, dotted line shows calculated result for 8 µm epitaxial layer.

H. Matis Version II - 16 different configurations Row 1 - Pixels with one to four distributed diodes. Increase in charge collected within one pixel –Less charge diffusion to neighboring pixels –But lower gain due to increased capacitance

H. Matis Sample Fe55 Spectra 1638 electrons

H. Matis Speed Matters Output of ADC Currently reading a pixel with 500 kHz clock - limited by external ADC Easily could read at 1 MHz Need 250 ms to read out 1000 x 1000 chip with 4 channels at this speed Working to improve speed for next generation 1 µs/division

H. Matis Total Collected Charge (Fe-55)

H. Matis Signal to Noise (Fe-55)

H. Matis Diode Topology vs.. Collected Charge Normalized charge plots. More diodes yields greater percentage of charge collected

H. Matis Diode Topology vs. Signal to Noise More diodes reduces S/N except for the single pixel case (no summation of neighboring pixels)

H. Matis Other Configurations - Rows 2-4 Row 2 - Same as Row 1 except larger output transistor Row 3 - Centered pixel 1 small pickup 2 medium well pickup 3 large well pickup 4 large diffusion Row 4 -Sample and Hold 1 small well pickup 2 medium well pickup 3 large diffusion 4 large diffusion

H. Matis S/N All Sectors Row 1Row 2 Row 3 Row 4

H. Matis Charge Diffusion Increasing number of diode collection points increases collection with lower signal Sample and Hold collects charge in few pixels but much lower signal Row diode Row diode Row 4 - Sample and Hold

H. Matis Radiation Hardness CCDs show radiation effects ~ krad 3 year RHIC design luminosity krad or 1 x MeV p’s/cm 3 year RHIC II at 40x design krad Expose unpowered chips to 55 MeV p’s at 88” cyclotron

H. Matis Pre Radiation Post Radiation protons at 55 MeV Equivalent to 3 years at RHIC at 40x current luminosity

H. Matis 1.5  protons, 55 MeV Equivalent to x current Luminosity of RHIC (RHIC II) 3 RHIC II 1.5 RHIC II 9 RHIC II 30 RHIC II Mrad

H. Matis > Mrad exposure

H. Matis Signal Loss to Radiation Signal does decrease with radiation dose Noise increases Small change in radiation region of our interest Significant Mrad effects

H. Matis Thinned Silicon CCD detector thin to epi layer (with backing) Testing 50 µm and 100 µm wafers 50 µm wafer can be stretched to >1 kg (limit is our stain gauge) Build mechanical support easy to replace modules - beam accident Silicon

H. Matis Mechanical Configuration

H. Matis Summary and Conclusions A CMOS active pixel sensor array using an epitaxial silicon sensor has been designed and tested. –Two 128 by 128 pixel arrays were fabricated –Both used a standard digital 0.25 micron CMOS technology –Both used 8-10 micron epitaxial silicon sensors Variety of pixel topologies and circuits were tested. Optimum performance in sparse-event environment was obtained by simplest, highest gain pixel circuits. Tested with 1.5 GeV electrons and Fe-55 X-rays Obtained 13 electrons RMS noise and an SNR for single Fe-55 X-rays (5.9 keV) of greater than 30. Standard digital CMOS APS can resolve individual gamma rays and minimum-ionizing charged particles. CMOS technology appropriate to radiation environment of RHIC.

H. Matis Future Must fully understand noise sources – improve signal to noise. Reduce charge diffusion New faster chip in 0.5 µm process ready soon. Larger epi layer Increase speed of chip –1000 x 1000 array with four parallel channels - 50 ns readout  12.5 ms cycle time Mechanical Prototyping. Fixture ready in a week. Great promise of APS technology at RHIC

The End