1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function F(Z) giving the probability is the cumulative standardized.

Slides:



Advertisements
Similar presentations
CHOW TEST AND DUMMY VARIABLE GROUP TEST
Advertisements

EC220 - Introduction to econometrics (chapter 10)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
1 BINARY CHOICE MODELS: LOGIT ANALYSIS The linear probability model may make the nonsense predictions that an event will occur with probability greater.
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
In previous lecture, we highlighted 3 shortcomings of the LPM. The most serious one is the unboundedness problem, i.e., the LPM may make the nonsense predictions.
In previous lecture, we dealt with the unboundedness problem of LPM using the logit model. In this lecture, we will consider another alternative, i.e.
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
1 A MONTE CARLO EXPERIMENT In the previous slideshow, we saw that the error term is responsible for the variations of b 2 around its fixed component 
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
BINARY CHOICE MODELS: LOGIT ANALYSIS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 CONTINUOUS RANDOM VARIABLES A discrete random variable is one that can take only a finite set of values. The sum of the numbers when two dice are thrown.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: binary choice logit models Original citation: Dougherty, C. (2012) EC220.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function is the cumulative standardized normal distribution.
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
(1)Combine the correlated variables. 1 In this sequence, we look at four possible indirect methods for alleviating a problem of multicollinearity. POSSIBLE.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
1 BINARY CHOICE MODELS: LOGIT ANALYSIS The linear probability model may make the nonsense predictions that an event will occur with probability greater.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function F(Z) giving the probability is the cumulative standardized normal distribution, and the marginal effect f(Z) is given by the normal distribution itself.

2 The maximum likelihood principle is again used to obtain estimates of the parameters. BINARY CHOICE MODELS: PROBIT ANALYSIS

. probit GRAD ASVABC SM SF MALE Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = Probit estimates Number of obs = 540 LR chi2(4) = Prob > chi2 = Log likelihood = Pseudo R2 = GRAD | Coef. Std. Err. z P>|z| [95% Conf. Interval] ASVABC | SM | SF | MALE | _cons | Here is the result of the probit regression using the example of graduating from high school. BINARY CHOICE MODELS: PROBIT ANALYSIS

4 As with logit analysis, the coefficients have no direct interpretation. However, we can use them to quantify the marginal effects of the explanatory variables on the probability of graduating from high school. BINARY CHOICE MODELS: PROBIT ANALYSIS. probit GRAD ASVABC SM SF MALE Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = Probit estimates Number of obs = 540 LR chi2(4) = Prob > chi2 = Log likelihood = Pseudo R2 = GRAD | Coef. Std. Err. z P>|z| [95% Conf. Interval] ASVABC | SM | SF | MALE | _cons |

5 As with logit analysis, the marginal effect of X i on p can be written as the product of the marginal effect of Z on p and the marginal effect of X i on Z. BINARY CHOICE MODELS: PROBIT ANALYSIS

6 The marginal effect of Z on p is given by the standardized normal distribution. The marginal effect of X i on Z is given by  i. BINARY CHOICE MODELS: PROBIT ANALYSIS

7 As with logit analysis, the marginal effects vary with Z. A common procedure is to evaluate them for the value of Z given by the sample means of the explanatory variables. BINARY CHOICE MODELS: PROBIT ANALYSIS

8 As with logit analysis, the marginal effects vary with Z. A common procedure is to evaluate them for the value of Z given by the sample means of the explanatory variables.. sum GRAD ASVABC SM SF MALE Variable | Obs Mean Std. Dev. Min Max GRAD | ASVABC | SM | SF | MALE | BINARY CHOICE MODELS: PROBIT ANALYSIS

9 In this case Z is equal to when the X variables are equal to their sample means. BINARY CHOICE MODELS: PROBIT ANALYSIS Probit: Marginal Effects mean b product ASVABC SM11.58–0.008–0.094 SF MALE constant1.00–1.451–1.451 Total1.881

10 We then calculate f(Z). BINARY CHOICE MODELS: PROBIT ANALYSIS Probit: Marginal Effects mean b product ASVABC SM11.58–0.008–0.094 SF MALE constant1.00–1.451–1.451 Total1.881

11 The estimated marginal effects are f(Z) multiplied by the respective coefficients. We see that a one-point increase in ASVABC increases the probability of graduating from high school by 0.4 percent. BINARY CHOICE MODELS: PROBIT ANALYSIS Probit: Marginal Effects mean b product f(Z) f(Z)b ASVABC SM11.58–0.008– –0.001 SF MALE constant1.00–1.451–1.451 Total1.881

Probit: Marginal Effects mean b product f(Z) f(Z)b ASVABC SM11.58–0.008– –0.001 SF MALE constant1.00–1.451–1.451 Total Every extra year of schooling of the mother decreases the probability of graduating by 0.1 percent. Father's schooling has no discernible effect. Males have 0.4 percent higher probability than females. BINARY CHOICE MODELS: PROBIT ANALYSIS

13 The logit and probit results are displayed for comparison. The coefficients in the regressions are very different because different mathematical functions are being fitted. BINARY CHOICE MODELS: PROBIT ANALYSIS Logit Probit f(Z)b f(Z)b ASVABC SM–0.001–0.001 SF MALE

14 Nevertheless the estimates of the marginal effects are usually similar. BINARY CHOICE MODELS: PROBIT ANALYSIS Logit Probit f(Z)b f(Z)b ASVABC SM–0.001–0.001 SF MALE

15 However, if the outcomes in the sample are divided between a large majority and a small minority, they can differ. BINARY CHOICE MODELS: PROBIT ANALYSIS Logit Probit f(Z)b f(Z)b ASVABC SM–0.001–0.001 SF MALE

16 This is because the observations are then concentrated in a tail of the distribution. Although the logit and probit functions share the same sigmoid outline, their tails are somewhat different. BINARY CHOICE MODELS: PROBIT ANALYSIS Logit Probit f(Z)b f(Z)b ASVABC SM–0.001–0.001 SF MALE

17 This is the case here, but even so the estimates are identical to three decimal places. According to a leading authority, Amemiya, there are no compelling grounds for preferring logit to probit or vice versa. BINARY CHOICE MODELS: PROBIT ANALYSIS Logit Probit f(Z)b f(Z)b ASVABC SM–0.001–0.001 SF MALE

18 Finally, for comparison, the estimates for the corresponding regression using the linear probability model are displayed. BINARY CHOICE MODELS: PROBIT ANALYSIS Logit Probit Linear f(Z)b f(Z)b b ASVABC SM–0.001–0.001–0.002 SF MALE –0.007

Logit Probit Linear f(Z)b f(Z)b b ASVABC SM–0.001–0.001–0.002 SF MALE – If the outcomes are evenly divided, the LPM coefficients are usually similar to those for logit and probit. However, when one outcome dominates, as in this case, they are not very good approximations. BINARY CHOICE MODELS: PROBIT ANALYSIS

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 10.3 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics