MIS 463 Analytic Hierarchy Process. 2 The Analytic Hierarchy Process (AHP) It is popular and widely used method for multi-criteria decision making. Allows.

Slides:



Advertisements
Similar presentations
Modellistica e Gestione dei Sistemi Ambientali A tool for multicriteria analysis: The Analytic Hierarchy Process Chiara Mocenni University of.
Advertisements

Multicriteria Decision-Making Models
DECISION MODELING WITH Multi-Objective Decision Making
Multi‑Criteria Decision Making
Analytical Hierarchy Process (AHP) - by Saaty
1 1 Slide Chapter 10 Multicriteria Decision Making n A Scoring Model for Job Selection n Spreadsheet Solution of the Job Selection Scoring Model n The.
Analytic Hierarchy Process Multiple-criteria decision-making Real world decision problems –multiple, diverse criteria –qualitative as well as quantitative.
Analytic Hierarchy Process Multiple-criteria decision-making Real world decision problems –multiple, diverse criteria –qualitative as well as quantitative.
ANALYTIC HIERARCHY PROCESS
MIS 463 Analytic Hierarchy Process. 2 The Analytic Hierarchy Process (AHP) Founded by Saaty in It is a popular and widely used method for multi-criteria.
Lecture 08 Analytic Hierarchy Process (Module 1)
Introduction to Management Science
Copyright © 2006 Pearson Education Canada Inc Course Arrangement !!! Nov. 22,Tuesday Last Class Nov. 23,WednesdayQuiz 5 Nov. 25, FridayTutorial 5.
Modeling Decision Process Chapter 5. The What's & Whys of Modeling What is a model? A replica of a real system or object. An abstraction of reality Model.
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Problem Problem
Multi Criteria Decision Modeling Preference Ranking The Analytical Hierarchy Process.
Executive Manager Decision Making and Policy Planning, typically with many goals Sometimes even > 1 decision maker (Game Theory, Group Decisions) Linear.
MENENTUKAN LOKASI PABRIK YANG IDEAL MENGGUNAKAN AHP PERTEMUAN 12.
Introduction to Management Science
1 Multi-Criteria Decision Making MCDM Approaches.
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 14 - SELF TEST 20.
Game Theory.
9-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Multicriteria Decision Making Chapter 9.
Multicriteria Decision Making
9-1 Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Multicriteria Decision Making Chapter 9.
Presented by Johanna Lind and Anna Schurba Facility Location Planning using the Analytic Hierarchy Process Specialisation Seminar „Facility Location Planning“
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
Analytical Hierarchy Process ( AHP )
ELearning / MCDA Systems Analysis Laboratory Helsinki University of Technology Introduction to Value Tree Analysis eLearning resources / MCDA team Director.
Quantitative Analysis for Management Multifactor Evaluation Process and Analytic Hierarchy Process Dr. Mohammad T. Isaai Graduate School of Management.
1 1 Slide © 2004 Thomson/South-Western Chapter 17 Multicriteria Decisions n Goal Programming n Goal Programming: Formulation and Graphical Solution and.
The Decision Making Process with EC2000-Keypad and Internet Versions.
Spreadsheet Modeling and Decision Analysis, 3e, by Cliff Ragsdale. © 2001 South-Western/Thomson Learning Multicriteria Decision Making u Decision.
Multi-Criteria Decision Making by: Mehrdad ghafoori Saber seyyed ali
1 Chapter 16 The Analytic Hierarchy Process. 2 The analytic hierarchy process (AHP), which was developed by Thomas Saaty when he was acting as an adviser.
Recap: How the Process Works (1) Determine the weights. The weights can be absolute or relative. Weights encompass two parts -- the quantitative weight.
Chapter 9 - Multicriteria Decision Making 1 Chapter 9 Multicriteria Decision Making Introduction to Management Science 8th Edition by Bernard W. Taylor.
MAINTENANCE STRATEGY SELECTION BASED ON HYBRID AHP-GP MODEL SUZANA SAVIĆ GORAN JANAĆKOVIĆ MIOMIR STANKOVIĆ University of Niš, Faculty of Occupational Safety.
1 Mutli-Attribute Decision Making Scott Matthews Courses: / /
Agenda for This Week Wednesday, April 27 AHP Friday, April 29 AHP Monday, May 2 Exam 2.
THE ANALYTIC HIERARCHY PROCESS CAR PURCHASE EXAMPLE.
Multi-Criteria Decision Making
Analytic Hierarchy Process. 2 The Analytic Hierarchy Process (AHP) Founded by Saaty in It is a popular and widely used method for multi-criteria.
An overview of multi-criteria analysis techniques The main role of the techniques is to deal with the difficulties that human decision-makers have been.
Multi-Criteria Analysis - preference weighting. Defining weights for criteria Purpose: to express the importance of each criterion relative to other criteria.
To accompany Quantitative Analysis for Management, 9e \by Render/Stair/Hanna M1-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Analytic Hierarchy.
BUSINESS PERFORMANCE MANAGEMENT
Analytic Hierarchy Process (AHP)
Applied Mathematics 1 Applications of the Multi-Weighted Scoring Model and the Analytical Hierarchy Process for the Appraisal and Evaluation of Suppliers.
Analytic Hierarchy Process Do your decision conferences turn out like this?
Constructing the PAHP-based Decision Support System by Considering the Ambiguity in Decision Making Norihiro Saikawa Department of Computer and Information.
ON ELICITATION TECHNIQUES OF NEAR-CONSISTENT PAIRWISE COMPARISON MATRICES József Temesi Department of Operations Research Corvinus University of Budapest,
ESTIMATING WEIGHT Course: Special Topics in Remote Sensing & GIS Mirza Muhammad Waqar Contact: EXT:2257 RG712.
MCE: Eigen Values Calculations from Pair Wise Comparisons. Addition to Exercise 2-8.
This Briefing is: UNCLASSIFIED Aha! Analytics 2278 Baldwin Drive Phone: (937) , FAX: (866) An Overview of the Analytic Hierarchy Process.
Analytic Hierarchy Process Multiple-criteria decision-making Real world decision problems –multiple, diverse criteria –qualitative as well as quantitative.
Reality of Highway Construction Equipment in Palestine
Supplement S7 Supplier Selection.
MULTI CRITERIA DECISION MAKING - APPLICATIONS IN PROJECT MANAGEMENT
Analytic Hierarchy Process (AHP)
A Scoring Model for Job Selection
ANALYTIC HIERARCHY PROCESS (AHP)
The Decision Making Process with EC2000-Keypad and Internet Versions
Analytic Hierarchy Process Prepared by Lee Revere and John Large
Analytic Hierarchy Process (AHP)
Slides by John Loucks St. Edward’s University.
Agenda for This Week Monday, April 25 AHP Wednesday, April 27
Multicriteria Decision Making
IME634: Management Decision Analysis
Introduction to Value Tree Analysis
Presentation transcript:

MIS 463 Analytic Hierarchy Process

2 The Analytic Hierarchy Process (AHP) It is popular and widely used method for multi-criteria decision making. Allows the use of qualitative, as well as quantitative criteria in evaluation. Founded by Saaty in Wide range of applications exists:  Selecting a car for purchasing  Deciding upon a place to visit for vacation  Deciding upon an MBA program after graduation.

3 AHP-General Idea Develop an hierarchy of decision criteria and define the alternative courses of actions. AHP algorithm is basically composed of two steps: 1. Determine the relative weights of the decision criteria 2. Determine the relative rankings (priority) of alternatives ! Both qualitative and quantitative information can be compared using informed judgements to derive weights and priorities.

4 Example: Car Selection Objective  Selecting a car Criteria  Style, Reliability, Fuel-economyCost? Alternatives  Civic Coupe, Saturn Coupe, Ford Escort, Mazda Miata

5 Hierarchy tree CivicSaturnEscortMiata Alternative courses of action

6 Ranking of Criteria and Alternatives Pairwise comparisons are made with the grades ranging from 1-9. A basic, but very reasonable, assumption: If attribute A is absolutely more important than attribute B and is rated at 9, then B must be absolutely less important than A and is valued at 1/9. These pairwise comparisons are carried out for all factors to be considered, usually not more than 7, and the matrix is completed.

7 Ranking Scale for Criteria and Alternatives

8 Ranking of criteria StyleReliabilityFuel Economy Style Reliability Fuel Economy 1/11/23/1 2/11/14/1 1/31/41/1

9 Ranking of priorities Consider [Ax = max x] where  A is the comparison matrix of size n×n, for n criteria.  x is the Eigenvector of size n×1  max  is the Eigenvalue, max  > n. To find the ranking of priorities, namely the Eigen Vector X: Initialization: Take the squared power of matrix A, i.e., A 2 =A.A Find the row sums of A 2 and normalize this array to find E 0. Set A:=A 2 Main: 1. Take the squared power of matrix A, i.e., A 2 =A.A 2. Find the row sums of A 2 and normalize this array to find E Find D= E 1 - E IF the elements of D are close to zero, then X= E 1, STOP. ELSE set A:=A 2, set E 0 :=E 1 and go to Step 1.

A2=A2= Row sums Normalized Row Sums Iteration 1: Initialization: A= A 2 xA 2 = Row sums Normalized Row Sums E 1 -E 0 = = Almost zero, so Eigen Vector, X = E 1. E0E0 E1E1

11 Criteria weights Style.3196 Reliability.5584 Fuel Economy.1220

12 Checking for Consistency The next stage is to calculate a Consistency Ratio (CR) to measure how consistent the judgements have been relative to large samples of purely random judgements. AHP evaluations are based on the aasumption that the decision maker is rational, i.e., if A is preferred to B and B is preferred to C, then A is preferred to C. If the CR is greater than 0.1 the judgements are untrustworthy because they are too close for comfort to randomness and the exercise is valueless or must be repeated.

13 Calculation of Consistency Ratio The next stage is to calculate max so as to lead to the Consistency Index and the Consistency Ratio. Consider [Ax = max x] where x is the Eigenvector = = max λmax=average{0.9648/0.3196, /0.5584, /0.1220}= A x x Consistency index is found by CI=(λmax-n)/(n-1)=( )/(3-1)= 0.009

14 Consistency Ratio The final step is to calculate the Consistency Ratio, CR by using the table below, derived from Saaty’s book, in which the upper row is the order of the random matrix, and the lower is the corresponding index of consistency for random judgements. Each of the numbers in this table is the average of CI’s derived from a sample of randomly selected reciprocal matrices using the AHP scale. An inconsistency of 10% or less implies that the adjustment is small compared to the actual values of the eigenvector entries. A CR as high as, say, 90% would mean that the pairwise judgements are just about random and are completely untrustworthy! In the above example: CR=CI/0.58=0.0090/0.58= (less than 0.1, so the evaluations are consistent)

15 Ranking alternatives Style Civic Saturn Escort 1/1 1/44/1 1/6 4/1 1/14/1 1/4 1/4 1/4 1/11/5 Miata6/1 4/1 5/1 1/1 CivicSaturnEscortMiata Reliability Civic Saturn Escort 1/1 2/15/1 1/1 1/2 1/1 3/1 2/1 1/5 1/3 1/11/4 Miata1/1 1/2 4/1 1/1 CivicSaturnEscortMiata Eigenvector

16 Fuel Economy Civic Saturn Escort Miata Miles/gallon Normalized Ranking alternatives ! Since fuel economy is a quantitative measure, fuel consumption ratios can be used to determine the relative ranking of alternatives; however this is not obligatory. Pairwise comparisons may still be used in some cases.

17 - Civic Saturn Escort Miata Civic Saturn Escort Miata Civic Saturn Escort Miata.2480

18 Ranking of alternatives Style Reliability Fuel Economy Civic Escort Miata Saturn * = Criteria Weights

19 Including Cost as a Decision Criteria CIVIC$12K SATURN$15K ESCORT$9K MIATA$18K Cost Normalized Cost Cost/Benefits Ratio Adding “cost” as a a new criterion is very difficult in AHP. A new column and a new row will be added in the evaluation matrix. However, whole evaluation should be repeated since addition of a new criterion might affect the relative importance of other criteria as well! Instead one may think of normalizing the costs directly and calculate the cost/benefit ratio for comparing alternatives!

Methods for including cost criterion Using graphical representations to make trade-offs. cost Calculate benefit/cost ratios Use linear programming Use seperate benefit and cost trees and then combine the results 20 benefit

21 Complex decisions Many levels of criteria and sub-criteria exists for complex problems.

22 Professional commercial software Expert Choice developed by Expert Choice Inc. is available which simplifies the implementation of the AHP’s steps and automates many of its computations  computations  sensitivity analysis  graphs, tables AHP Software:

Ex 2: Evaluation of Job Offers 23 Ex: Peter is offered 4 jobs from Acme Manufacturing (A), Bankers Bank (B), Creative Consulting (C), and Dynamic Decision Making (D). He bases his evaluation on the criteria such as location, salary, job content, and long-term prospects. Step 1: Decide upon the relative importance of the selection criteria: Location Content Long-term Salary 11/51/31/ / /21/31 LocationSalaryContentLong-term

A Different Way of Calculating Priority Vectors: 24 1) Normalize the column entries by dividing each entry by the sum of the column. 2) Take the overall row averages Location Content Long-term Salary LocationSalaryContentLong-term Average

Example 2: Evaluation of Job Offers 25 Step 2: Evaluate alternatives w.r.t. each criteria ABCDABCD 11/21/35 211/ /51/71/91 A B C D Relative Location Scores Location Scores ABCDABCD A B C D Avg

Example 2: Calculation of Relative Scores 26 Relative Scores for Each Criteria ABCDABCD Location Salary Content Long-Term Relative weights for each criteria x= Relative scores for each alternative

More about AHP: Pros and Cons 27 AHP is technique for formalizing decision making such that It is applicable when it is difficult to formulate criteria evaluations, i.e., it allows qualitative evaluation as well as quantitative evaluation. It is applicable for group decision making environments However There are hidden assumptions like consistency Difficult to use when there are large number of evaluations Use GDSS Use constraints to eliminate some alternatives Difficult to add a new criterion or alternative Use cost/benefit ratio if applicable Difficult to take out an existing criterion or alternative, since the best alternative might differ if the worst one is excluded.

Group Decision Making 28 The AHP allows group decision making, where group members can use their experience, values and knowledge to break down a problem into a hierarchy and solve. Doing so provides:  Understand the conflicting ideas in the organization and try to reach a consensus.  Minimize dominance by a strong member of the group.  Members of the group may vote for the criteria to form the AHP tree. (Overall priorities are determined by the weighted averages of the priorities obtained from members of the group.) However; The GDSS does not replace all the requirements for group decision making. Open meetings with the involvement of all members are still an asset.

Example 3: AHP in project management 29 Prequalification of contractors aims at the elimination of incompetent contractors from the bidding process. It is the choice of the decision maker to eliminate contractor E from the AHP evalution since it is not “feasible” at all !!

Example 3: AHP in project management 30 Step 1: Evaluation of the weights of the criteria Step 2: a) Pairwise comparison matrix for experience

Example 3: AHP in project management 31 Calculation of priority vector: x = Note that a DSS supports the decision maker, it can not replace him/her. Thus, an AHP Based DSS should allow the decision maker to make sensitivity analysis of his judgements on the overall priorities ! Probably Contractor-E should have been eliminated. It appears to be the worst.

References 32 Al Harbi K.M.A.S. (1999), Application of AHP in Project Management, International Journal of Project Management, 19, Haas R., Meixner, O., (2009) An Illustrated Guide to the Analytic Hierarchy Process, Lecture Notes, Institute of Marketing & Innovation, University of Natural Resources and Saaty, T.L., Vargas, L.G., (2001), Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, Kluwer’s Academic Publishers, Boston, USA.