1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red123456 This sequence provides an example of a discrete random variable. Suppose that you.

Slides:



Advertisements
Similar presentations
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
Advertisements

Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: probability distribution example: x is the sum of two dice Original.
THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012)
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function F(Z) giving the probability is the cumulative standardized.
Random effects estimation RANDOM EFFECTS REGRESSIONS When the observed variables of interest are constant for each individual, a fixed effects regression.
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
TESTING A HYPOTHESIS RELATING TO THE POPULATION MEAN 1 This sequence describes the testing of a hypothesis at the 5% and 1% significance levels. It also.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
1 A MONTE CARLO EXPERIMENT In the previous slideshow, we saw that the error term is responsible for the variations of b 2 around its fixed component 
1 In the previous sequence, we were performing what are described as two-sided t tests. These are appropriate when we have no information about the alternative.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
1 In a second variation, we shall consider the model shown above. x is the rate of growth of productivity, assumed to be exogenous. w is now hypothesized.
EC220 - Introduction to econometrics (review chapter)
1 UNBIASEDNESS AND EFFICIENCY Much of the analysis in this course will be concerned with three properties of estimators: unbiasedness, efficiency, and.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 CONTINUOUS RANDOM VARIABLES A discrete random variable is one that can take only a finite set of values. The sum of the numbers when two dice are thrown.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
CONSEQUENCES OF AUTOCORRELATION
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
TYPE II ERROR AND THE POWER OF A TEST A Type I error occurs when the null hypothesis is rejected when it is in fact true. A Type II error occurs when the.
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 We will now look at the properties of the OLS regression estimators with the assumptions of Model B. We will do this within the context of the simple.
1 COVARIANCE, COVARIANCE AND VARIANCE RULES, AND CORRELATION Covariance The covariance of two random variables X and Y, often written  XY, is defined.
1 Y SIMPLE REGRESSION MODEL Suppose that a variable Y is a linear function of another variable X, with unknown parameters  1 and  2 that we wish to estimate.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
1 ASYMPTOTIC PROPERTIES OF ESTIMATORS: THE USE OF SIMULATION In practice we deal with finite samples, not infinite ones. So why should we be interested.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
INSTRUMENTAL VARIABLES 1 Suppose that you have a model in which Y is determined by X but you have reason to believe that Assumption B.7 is invalid and.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you have a red die which, when thrown, takes the numbers from 1 to 6 with equal probability.

2 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Suppose that you also have a green die that can take the numbers from 1 to 6 with equal probability.

3 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green We will define a random variable X as the sum of the numbers when the dice are thrown.

4 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green For example, if the red die is 4 and the green one is 6, X is equal to 10.

5 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE Similarly, if the red die is 2 and the green one is 5, X is equal to 7. red green

6 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green The table shows all the possible outcomes.

7 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36 If you look at the table, you can see that X can be any of the numbers from 2 to 12.

8 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36 We will now define f, the frequencies associated with the possible values of X.

9 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36 For example, there are four outcomes which make X equal to 5.

10 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Similarly you can work out the frequencies for all the other values of X. Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36

11 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36 Finally we will derive the probability of obtaining each value of X.

12 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36 If there is 1/6 probability of obtaining each number on the red die, and the same on the green die, each outcome in the table will occur with 1/36 probability.

13 Hence to obtain the probabilities associated with the different values of X, we divide the frequencies by 36. PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red green Xfp 211/36 322/36 433/36 544/36 655/36 766/36 855/36 944/ / / /36

14 The distribution is shown graphically. in this example it is symmetrical, highest for X equal to 7 and declining on either side. 6 __ 36 5 __ 36 4 __ 36 3 __ 36 2 __ 36 2 __ 36 3 __ 36 5 __ 36 4 __ 36 probability X PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section R.2 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course EC2020 Elements of Econometrics