5-quark components in baryons Bing-Song Zou Institute of High Energy Physics Beijing.

Slides:



Advertisements
Similar presentations
Quark structure of the Pentaquark(?) Jo Dudek, Jefferson Lab.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Hadron physics with GeV photons at SPring-8/LEPS II
July 20-25, 2009N u F a c t 0 9 IIT, Chicago Quark-Hadron Duality in lepton scattering off nucleons/nuclei from the nucleon to the nucleus Krzysztof M.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Originally form Brian Meadows, U. Cincinnati Bound States.
Sorakrai Srisuphaphon Role of pentaquark components into  meson production  meson production proton-antiproton annihilation reactions proton-antiproton.
Heavy quark spectroscopy and accurate prediction of b-baryon masses in collaboration with Marek Karliner, B. Keren-Zur and J. Rosner H.J. Lipkin.
CERN-07 SHLee 1 Heavy Exotic Particle Production from HIC at LHC Su Houng Lee Yonsei Univ., Korea with Shigehiro Yasui, Wei Liu, Che-Ming Ko.
Multi-quark Components in Baryons Bing-song Zou Institute of High Energy Physics, Beijing B.S.Zou and D.O.Riska, “The  ss component of the proton and.
“Exotic” hadron-hadron S-wave Interaction Bing-song Zou IHEP, Beijing.
1 5-quark components in baryons and evidence at BES Bing-Song Zou Institute of High Energy Physics Beijing.
Istanbul06 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Hadron spectroscopy, Heavy pentaquark, and.
NSTAR 2007Roelof Bijker, ICN-UNAM1 Flavor Asymmetry of the Nucleon Sea in an Unquenched Quark Model Introduction Degrees of freedom Unquenched quark model.
New Results and Prospects of Light Hadron Spectroscopy Shan JIN Institute of High Energy Physics (IHEP) Presented by Yi-Fang Wang.
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
Lattice Calculation of Pentaquark Baryons Nilmani Mathur Department of Physics and Astronomy University of Kentucky Collaborators : Kentucky Lattice QCD.
The Constituent Quark Models. Outline The Quark Model Original Quark Model Additions to the Original Quark Model Color Harmonic Potential Model Isgur-Karl.
Qiang Zhao Institute of High Energy Physics, CAS, P.R. China Department of Physics, University of Surrey, U.K. Baryons in a potential quark model Selection.
Eightfold Way (old model)
8/5/2002Ulrich Heintz - Quarknet Particle Physics what do we know? Ulrich Heintz Boston University.
Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
Recent Results of Light Hadron Spectroscopy at BESIII Yutie LIANG (On behalf of the BESIII Collaboration) Justus-Liebig-Universität, Gieβen, Germany MESON.
Quark dynamics studied in charmed baryons April 20, 2015ASRC Seminar1 Atsushi Hosaka, RCNP, Osaka ASRC Seminar Contents 1. Introduction 2. Structure: How.
Exclusive Production of Hadron Pairs in Two-Photon Interactions Bertrand Echenard University of Geneva on behalf of the LEP collaborations Hadronic Physics.
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
1 The theoretical understanding of Y(4260) CONG-FENG QIAO Graduate School, Chinese Academy of Sciences SEPT 2006, DESY.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
PWA with Covariant Tensor Formalism Bing-song Zou IHEP, Beijing.
Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Quark Nuclear Physics and Exotic Pentaquark as a Gamov-Teller Resonance Dmitri Diakonov Petersburg Nuclear Physics Institute QNP-09, Beijing Sep 24, 2009.
S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Physics of Pentaquarks Su Houng Lee Yonsei Univ.,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Harleen Dahiya Panjab University, Chandigarh IMPLICATIONS OF  ´ COUPLING IN THE CHIRAL CONSTITUENT QUARK MODEL.
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Observing the Universe by Going Underground ZOOMING OUT by ZOOMING IN HAIM HARARI Years of Physics at the Weizmann Institute of Science May 12 th, 2004.
Pentaquarks: Discovering new particles
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Strange Tribaryons as Nona-quarks Yuu Maezawa (Univ. Tokyo) Tetsuo Hatsuda (Univ. Tokyo) Shoichi Sasaki (RIKEN BNL) hep-ph/
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Penta-quark states from Strangeness to charm and beauty Bing-Song Zou Institute of Theoretical Physics, CAS, Beijing.
1 Hadron Physics at RHIC Su Houng Lee 1. Few words on hadronic molecule candidates and QCD sum rules 2. Few words on diquarks and heavy Multiquark States.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
Baryon Spectroscopy and Decays using the Belle Detector John Yelton University of Florida I review recent results on charmed baryon decay,
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
The study of pentaquark states in the unitary chiral approach
Hadron spectroscopy Pentaquarks and baryon resonances
The Standard Model.
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Lecture 4b quarks.
Heavy quark spectroscopy and accurate prediction of b-baryon masses
Brian Meadows, U. Cincinnati
The Quarks Inside Baryons
Section IX - Quark Model of Hadrons
Hadronic States with Large Multiquark Component
Study of Strange Quark in the Nucleon with Neutrino Scattering
Dibaryons at CLAS Mikhail Bashkanov.
charm baryon spectroscopy and decays at Belle
N* Production from J/ decays at BES
Presentation transcript:

5-quark components in baryons Bing-Song Zou Institute of High Energy Physics Beijing

Outline 1.Success and failure of classic 3q model 2.5-quark components in the proton 3.5-quark components in ½- excited baryons 4.Conclusion

1.Success and failure of classic 3q model SU(3) 3q-quark model for baryons SU(3) 3q-quark model for baryons 1/2 + spin-parity 3/2+ 1/2 + spin-parity 3/2+ Prediction m  -  1670 MeV experiment m  -   0.29 MeV s I3I3 n(udd)p(uud)  - (dds)  0 (uds) 00  + (uus)  - (dss)  0 (uss) (sss) △0△0 △-△- △+△+ △ ++ 00  *-  *+ (ddd) (udd)(uud) (uuu) (dds) (uds) (uus) *-*-  *0 (uss) (dss) -- Successful for spatial ground states !

Two outstanding problems for excited baryons Mass order reverse problem for the lowest excited baryonsMass order reverse problem for the lowest excited baryons uud (L=1) ½ - ~ N*(1535) should be the lowest uud (n=1) ½ + ~ N*(1440) uds (L=1) ½ - ~  *(1405) harmonic oscillator ( 2n + L + 3/2 ) h  harmonic oscillator ( 2n + L + 3/2 ) h  The number of predicted states is much less than observedThe number of predicted states is much less than observed “missing” baryon states : non-existence / to be observed ? “missing” baryon states : non-existence / to be observed ?

What are effective degrees of freedom ? (a) 3q (b) hybrid (c) diquark (d) multi-quark Predicted states: (d) > (b) > (a) > (c)

2. 5-quark components in the proton Classical picture of the proton Perturbative gluon-sea-quark fluctuation :  u(x) =  d(x),  s(x) = s(x)

Flavor asymmetry of light quarks in the nucleon sea Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process  d –  u ~ 0.12 Meson cloud model: | p > ~ | uud > +   | n ( udd )  + (  du ) > A.Thomas, J.Speth +   |  ++ ( uuu )  - (  ud ) > +…

Meson cloud model including strangeness: | p > ~ | uud > +   | n ( udd )  + (  du ) > +   |  ++ ( uuu )  - (  ud ) > +  ’ |  (uds) K + (  su ) > + … Predictions for the proton: Strange spin :  s < 0 Strange magnetic moment :  s < 0 Strange radii : r s < 0 The most recent analysis of data for strange spin   s = ~ -0.1 D. de Florian et al., Phys. Rev. D71 (2005)

The strange magnetic moment  s and radii r s from parity violating electron scattering G0,HAPPEX/CEBAF, SAMPLE/MIT-Bates, A4/MAMI HAPPEX/CEBAF, Phys.Rev.Lett. 96 (2006) G0/CEBAF, Phys.Rev.Lett. 95 (2005) A4/MAMI, Phys.Rev.Lett. 94 (2005) SAMPLE/MIT-Bates: Phys.Lett.B583 (2004) 79

Theory vs experiment for  s and r s Our results B.S.Zou, D.O.Riska, Phys. Rev. Lett. 95 (2005) D.O.Riska, B.S.Zou, Phys. Lett. B636 (2006) 265 C.S.An,D.O.Riska,B.S.Zou, Phys. Rev. C73 (2006)

Theory vs experiment for  s and r s

B.S.Zou, D.O.Riska, Phys. Rev. Lett. 95 (2005) New picture for strangeness in the proton: Penta-quark configuration  s [su][ud] instead of meson cloud  (uds) K + (  su ) ! | p > ~ | uud > +    [ud][ud]  d > +   | [ud][us]  s > + … SS u u SS d u du SS SS Pentaquark vs Meson Cloud

Baryon spectroscopy from J/  decays at BES/BEPC Ideal isospin filter 3. 5-quark components in excited baryons

The nature of the lowest ½- resonance N*(1535) BES Collaboration, H.B.Li, B.S.Zou, H.C.Chiang, G.X.Peng, J.X.Wang, J.J.Zhu, Phys. Lett. B510 (2001) 75

Events/ 10 MeV NxNx NxNx NxNx PS, eff. corrected (Arbitrary normalization) N*(1535) in J/    p K -  + c.c. BES, Int. J. Mod. Phys. A20 (2005)

B.C.Liu, B.S.Zou, nucl-th/ , Phys. Rev. Lett. 96 (2006) From relative branching ratios of J/    p  N*  p (K-  p (  p  g N*K  /g N*p  /g N*p  ~ 1.3 : 1 : 0.6 Smaller N*(1535) BW mass

(1) (2) (3) Mass of N*(1535)

Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) pp  p K +  Tsushima,Sibirtsev,Thomas, PRC59 (1999) 369, without including N*(1535)

A.Zhang, Y. Liu, P. Huang, W. Deng, X.Chen, S.L. Zhu, hep-ph/ : 1/2- and 1/2+ octet N* pentaquarks have similar masses in Jaffe-Wilczek diquark model N*(1535) ~ uud (L=1) +  [ud][us]  s + … N*(1440) ~ uud (n=1) +  [ud][ud]  d + …  *(1405) ~ uds (L=1) +  [ud][su]  u + … Larger [ud][us]  s component in N*(1535) makes it coupling stronger to N  & K , weaker to N  & K  and heavier ! B.C.Liu, B.S.Zou, PRL 96(2006) u d du qq u du qq SS  q ½+ [ud] } L=1  q ½ - [ud] [us] } L=0

4. Conclusion 5-quark components in baryons are important Mainly in colored diquark cluster configuration rather than meson-cloud configuration. 谢谢大家!