Armando DOMICIANO de SOUZA Main collaborators: O. Chesneau (OCA, F), T. Driebe (MPIfR, D), K-.H. Hofmann (MPIfR, D), S. Kraus (MPIfR, D), A. Miroshnichenko.

Slides:



Advertisements
Similar presentations
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
Advertisements

Optics in Astronomy - Interferometry - Oskar von der Lühe Kiepenheuer-Institut für Sonnenphysik Freiburg, Germany.
20 April 2001AAO Workshop1 Optical & IR Interferometry Bill Tango School of Physics University of Sydney.
The end of star’s life: the high spatial resolution infrared view Olivier CHESNEAU Observatoire de la Côte d’Azur (OCA) The time aspect: a focus on novae.
Multi-wavelength interferometry of evolved stars Markus Wittkowski (ESO) Main collaborators: VLTI/VLBA project: David A. Boboltz (USNO), Thomas Driebe,
Science with the Very Large Telescope Interferometer (VLT-I) Jean-Baptiste Le Bouquin (ESO, Chile) for VLTI Team, AMBER team, MIDI team, PRIMA team… The.
VLBI observations of two 43-GHz SiO masers in R Cas Jiyune Yi KVN Korea VLBI Network ( KVN ) group Korea Astronomy and Space Science Institute In collaboration.
Studying circumstellar envelopes with ALMA
Breaking Barriers in Massive Star Formation with Stellar Interferometry Willem-Jan de Wit (ESO) Rene Oudmaijer (Leeds) Melvin Hoare (Leeds) Hugh Wheelwright.
Recent results from the SIMECA code and the VLTI observations Anthony Meilland and Philippe Stee Observatoire de la Côte d’Azur.
Eta Carinae: Clues to Its Binarity Ted Gull Krister Nielsen* Mike Corcoran John Hillier Kenji Hamaguchi Stefan Ivarsson Gerd Weigelt* & AMBER Team * Lead.
LUAN OCA F.X Schmider, A. Domiciano, R. Petrov, S. Jankov G. Berthomieu, P. Mathias, J. Provost, F. Thevenin C. Catala Measurement of diameter and rotation.
Romain G. Petrov Laboratoire LAGRANGE (OCA-UNS-CNRS) Avec S. Lagarde, F. Millour, M. Vannier, S. Rakshit (LAGRANGE), T. Elhalkouj (UCA Marrakech),
Romain G. Petrov, Lagrange Laboratory (OCA, UNS, CNRS), Nice, France with Suvendu Rakshit, Florentin Millour, Sebastian Hoënig, Anthony Meilland, Stephane.
F. Millour O. Chesneau, D. P. K. Banerjee, E. Lagadec, C. Lykou, A. Meilland, N. Nardetto, M. Otulaskova, A. Spang Cannes Esterel  Monaco My workplace.
Basics of Optical Interferometry (Observationnal Astronomy II) Lecture by Stéphane Sacuto.
Understanding interferometric visibility functions J. Meisner.
The Dusty Torus of NGC1068 Literature Study for the Bachelor Research Project: Bas Nefs Maarten Zwetsloot.
The Polarization of Achernar (α Eri, B3Vpe) David McDavid Department of Astronomy University of Virginia.
Recent results with VEGA/CHARA Denis MOURARD & VEGA/CHARA groups Observatoire de la Côte d’Azur Laboratoire Lagrange.
Temporal variations of the circumstellar environment of the Mira star V Oph Keiichi Ohnaka Max-Planck-Institut für Radioastronomie ESO Santiago Seminar.
Mid-infrared interferometry of the Mira star RR Sco with the VLTI/MIDI instrument collaborators: Keiichi Ohnaka, MPIfR Keiichi Ohnaka, MPIfR Karl-Heinz.
04/03/2011ARC Meeting, CSL Long baseline interferometry applied to the study of colliding-wind massive binaries: current status and prospects for the near.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
Variability of Be Stars: A Key to the Structure of their Circumstellar Environments Anatoly Miroshnichenko University of Toledo Variable Star Meeting 2004.
21 Mars 2006Visions for infrared astronomy1 Protoplanetary worlds at the AU scale Jean Philippe Berger J. Monnier, R. Millan-Gabet, W. Traub, M. Benisty,
Infrared Observations of Novae with Subaru/COMICS and Gemini/T- ReCS Sakon, I., Sako, S., Shimonishi, T., Onaka, T. (Univ. of Tokyo) Takahashi, H. (Gunma.
VLTI-AMBER observations of the LBV η Carinae with high spectral resolutions of Λ / Δλ = 1,500 & 12,000 Goutelas, France June 4-16, 2006 Gerd Weigelt Max-Planck.
VLTI ’ s view on the circumstellar environment of cool evolved stars: EuroSummer School Observation and data reduction with the Very Large Telescope Interferometer.
Olivier Absil Chargé de Recherches FNRS AEOS group 3 rd ARC meeting – March 4 th, 2011 Imaging faint companions with interferometric closure phases 3 rd.
Observations of Achernar with VINCI EuroSummer School Observation and data reduction with the Very Large Telescope Interferometer Goutelas, France June.
The Porto Quiz Based on P. Tuthill’s idea (at the Michelson summer workshop 2006) Questions contributed by lecturers.
The VLTI view of compact dusty environments around evolved stars Olivier CHESNEAU Observatoire de la Côte d’Azur (OCA) F. Lykou, E. Lagadec, A. Zijlstra.
JHK-band Spectro-Interferometry of T Cep with the IOTA Interferometer G. Weigelt, U. Beckmann, J. Berger, T. Bloecker, M.K. Brewer, K.-H. Hofmann, M. Lacasse,
Modeling Disks of sgB[e] Stars Jon E. Bjorkman Ritter Observatory.
Gone with the Wind EuroSummer School Observation and data reduction with the Very Large Telescope Interferometer Goutelas, France June 4-16, 2006 Romain.
ESMA workshop Leiden, 1-2 Feb Evolved Stars eSMA science case for evolved stars (AGB, post-AGB, proto-PNe and PNe) Wouter Vlemmings With various levels.
The AMBER & MIDI instruments of the VLTI (Observationnal Astronomy II) Lecture by Stéphane Sacuto.
MIDI: an overview EuroSummer School Observation and data reduction with the Very Large Telescope Interferometer Goutelas, France June 4-16, 2006 Olivier.
 AMBER workshop Grenoble March 2007 Jörg-Uwe Pott I. Physik. Institut University of Cologne, Germany VLTI observations of the central parsec of our Galaxy.
Dusty disks in evolved stars?
THE CIRCINUS GALAXY (ESO97-G013) SEEN BY VLTI/MIDI
Good Morning !. An introduction to the VLT Interferometer A. Richichi – ESO Garching.
CHARA Collaboration Year-Five Science Review Observations of Be Star Circumstellar disks with the CHARA Array Status of the Be stars Survey Project CHARA.
High Resolution Mid-Infrared Imaging of Dusty Circumstellar Structure around Evolved Stars with the MMT Adaptive Optics System B.A. Biller, L.M. Close,
MIDI design, performance, operations, and science Markus Schöller (INS)
Milli-arcsecond Imaging of the Inner Regions of Protoplanetary Disks Stéphanie Renard In collaboration with F. Malbet, E. Thiébaut, J.-P. Berger & M. Benisty.
Diffraction-limited bispectrum speckle interferometry of the carbon star IRC with 73 mas resolution: The dynamic evolution of the innermost circumstellar.
Multi-wavelength interferometry of evolved stars
Probing the nuclear emission structure in the LINER F with the VLTI by Konstantina & Jürgen Abstract: LINER bear an AGN with unusual properties.
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Science with interferometry during the last decade Olivier CHESNEAU delivered and distorted by John Monnier.
Bispectrum speckle interferometry of NGC 1068
CHARA Collaboration Year-Five Science Review Massive Star Diameters Measured with CHARA/PAVO PhD update for Noel Richardson (GSU) Presented by Douglas.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
VEGA/CHARA: Status and First Science SPIE 2010 San Diego M. Tallon, D. Mourard The VEGA and CHARA Teams.
Young Stellar Objects: The Inner AU John D. Monnier University of Michigan Art Credit: Luis Belerique Collaborators Ajay Tannirkulam (UM)Rafael Millan-Gabet.
The circumstellar environment of evolved stars as seen by VLTI / MIDI Keiichi Ohnaka Max-Planck-Institut für Radioastronomie, Infrared Interferometry Group.
AMBER & MIDI instruments - the user ’ s point of view Euro Summer School Active Galactic Nuclei at the highest angular resolution: theory and observations.
The Mira variable S Ori: SiO maser shells related to the photosphere and dust shell at 3 epochs Markus Wittkowski (ESO), David A. Boboltz (U.S. Naval Observatory),
The Very Large Telescope Interferometer Neon School, Garching 29 August, 2008 Andrea Richichi European Southern Observatory.
CHARA Collaboration Year-Eight Science Review   Cet. MWC 361 PCyg Circumstellar environments with VEGA/CHARA Isabelle Tallon-Bosc Thibaut Merle Karine.
Mass-loss from Evolved stars: High Spatial Resolution Studies Olivier Chesneau, Observatoire de la Côte d’Azur Collaborators (many…): Armando DomicianoBruno.
CHARA Collaboration Year-Five Science Review. First science results with VEGA II: differential interferometry D. BonneauA. Domiciano O. Chesneau D. Mourard.
Near-infrared interferometry of NGC 1068 Markus Wittkowski (ESO) Based on work ( ) with R. Arsenault, Y. Balega, T. Beckert, W. J. Duschl, K.-H.
CO mass-loss rate of red-supergiants at low metallicity
Literature Study for the Bachelor Research Project:
Be Stars Nicholas De Lucca.
Observational Astronomy
Presentation transcript:

Armando DOMICIANO de SOUZA Main collaborators: O. Chesneau (OCA, F), T. Driebe (MPIfR, D), K-.H. Hofmann (MPIfR, D), S. Kraus (MPIfR, D), A. Miroshnichenko (UT, US), K. Ohnaka (MPIfR, D), P. Stee (OCA, F), G. Weigelt (MPIfR, D)

Plan Introduction The B[e] phenomenon Principles of optical/IR long baseline interferometry VLTI (MIDI and AMBER) observations of CPD VLTI-MIDI (visibilities, spectrum, modelling, comparison to other data) VLTI-AMBER (visibilities, modelling, phases) Comparison of VLTI-MIDI and VLTI-AMBER results

The B[e] phenomenon (Lamers et al. 1998) 1. Strong Balmer emission lines. 2. Low excitation permitted emission lines of predominantly low ionization metals in the optical spectrum, e.g. Fe II. 3. Forbidden emission lines of [Fe II] and [O I] in the optical spectrum. 4. A strong near or mid-infrared excess due to hot circumstellar dust. Meilland

The B[e] phenomenon (Lamers et al. 1998) Zickgraf et al. (1985) Supergiants B[e]  L * /Lsun > 10 4 Observations point towards asymmetrical stellar environments Need for direct measurements  High angular resolution 

Principles of optical/IR long baseline interferometry Weigelt et al. (2003) IOTA spectro-interferometry Bands J H K

Principles of optical/IR long baseline interferometry Complex Visibilities V(u,v, )= FT[I(u,v, )] / FT[I(0,0, )] Weigelt et al. (2000) GI2T -  Cas Interference fringes  Intensity map I(y,z, )

Interferometry : the uv or Fourier plane ESO-VLTI Partial uv coverage  Models are needed to interpret the current interferometric observations u and v  spatial frequency B proj / ASPRO - JMMC Complex Visibility V(u,v, ) Fourier Transform Intensity distribution of the object at a given

Observations of B[e] stars with VLTI-MIDI and VLTI-AMBER Targets: GG Car MIDI Not well resolved (size < 10 mas) CPD MIDI and AMBER Observational set-up: MIDI N band with R=30 (8-13  m) Unit Telescopes (UTs) 2 baselines AMBER K band with R=1200 (  m) Unit Telescopes (UTs) 3 baselines (closure phase)

VLTI-MIDI observations MIDI Equivalent uniform disc model: V( ) = |2J 1 (z) / z|, where z =   UD ( ) B proj /

VLTI-MIDI observations UD diameter versus Position Angle

VLTI-MIDI : fit of V with gaussian-models 2a = 2a 0 + K ( - 0 ) VLTI-MIDI : fit of V with gaussian-models Chromatic variation of the major axis FWHM  2a = 2a 0 + K ( - 0 ) Gaussian circle Gaussian ellipse 2a = (10.1  0.7) + (2.6  0.4) ( -8  m) mas Axial ratio 2b/2a = 0.76  0.08 Position angle PA = 144°  6° 2a = (15.3  0.7) + (0.5  0.2) ( -12  m) mas Axial ratio 2b/2a = 0.80  0.06 Position angle PA = 143°  6° 2a = (8.7  0.4) + (2.2  0.3) ( -8  m) mas 2a = (13.5  0.2) + (0.4  0.2) ( -12  m) mas

VLTI-MIDI spectrum Possible origin of this featureless spectrum around 10  m: Large grains ? Carbonaceous dust ? Free-free emission ? Additional opacity sources ?

Modelling VLTI-MIDI observations Envelope of dust with spherical symmetry DUSTY code (Ivezic et al.) Stellar input parameters: distance = 2 kpc V = 10.1 Av = 5.9  V 0 = 4.2 T eff = K log L/L  = 5.6 R = 53R   angular diameter Ø = 0.25 mas

Spherical model (DUSTY code) : silicate with large grains

Spherical model (DUSTY code) : graphite with large grains

Dust close to the star ? SED can be reproduced by the spherical dust model, but not the visibilities  inner dust radius is too large (~12 mas for silicates and ~60 mas for graphite) ! What is the origin of the mid-IR emission relatively close to the star measured with VLTI-MIDI ? Possibility to get dust closer to the star : Dense equatorial wind  disk-like structure able to shield the disk material to allow molecules and dust to be formed near the hot central star (Kraus & Lamers 2003).

Support for a non-spherical envelope A spherical model does not seem to simultaneously fit the SED and VLTI-MIDI visibilities Winds of sgB[e] have two components (e.g. Zickgraf et al. 1985) Several sgB[e] show high intrinsic polarizations consistent with non-spherical dusty envelopes (e.g. Magalhães 1992) Zickgraf et al. (1985)

Polarization PA versus VLTI-MIDI PA UBV Data from Yudin & Evans (1998) Yudin & Evans (1998) polarization = 45°  3° Polarization perpendicular to disc: (45°  3°) + 90°= 135  3° Ellipse orientation from MIDI : 143.5°  6° N E

VLTI-AMBER observations Equivalent uniform disc model: V( ) = |2J 1 (z) / z|, where z =   UD ( ) B proj / AMBER

VLTI-AMBER observations UD diameter versus Position Angle

VLTI-AMBER : fit of V with gaussian-models Gaussian ellipse 2a = (3.90  0.03) + (7.3  0.2) ( -2.2  m) mas Axial ratio 2b/2a = 0.56  0.01 Position angle PA = -2.9°  0.4° Br   C = 0.93  0.11 mas ;  =1.6   m Gaussian circle 2a = (2.46  0.01) + (5.2  0.1) ( -2.2  m) mas Br   C = 0.64  0.08 mas ;  =1.6  0.2 pm Chromatic variation of the major axis FWHM : 2a=2a 0 +K( - 0 )+C exp[-4ln2( - c )/] 2a=2a 0 +K( - 0 )+C exp[-4ln2( - c )/  ]

VLTI-AMBER : closure phase closure phase (deg) VLTI  (microns) Centrally-symmetric intensity distribution

VLTI-AMBER : differential phases  (microns) Differential phase  (microns) VLTI UT2-UT3 UT3-UT4 UT4-UT2 No chromatic variation of object’s symmetry

Measured sizes of CPD N E AMBERMIDI

FIN THE END FIM ENDE

Interstellar polarization ? Stars within 2° of CPD (Heiles 2000) Stars with low and high polarizations have random PA

Modelling VLTI-MIDI observations Inner radius Silicate r in =12 mas ~100R * ~ 24 AU Graphite r in =60 mas ~480R * ~ 120 AU

g eff -effect  -effect bi-stable winds Lamers model Maeder model  Car van Boekel (2003) VLTI-VINCI Theory of (anisotropic) winds of massive stars Maeder & Desjacques (2001 A&A), Lamers & Pauldrach (1991 A&A), Maeder (1999 A&A), Langer et al. (1999 ApJ), etc von Zeipel effect: Rapid rotation and Log L/L  > 10 4  Star close to the  -limit : Eddington factor variable in latitude Mass loss variable in latitude (opacity and gravity effect) :