High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele Vienna, 1 December 2012 qB OUNCE : Spectroscopy of Gravity |1 > 1.4 peV |3 >

Slides:



Advertisements
Similar presentations
Teilchenphysik – ohne Beschleuniger und Kosmologie Wiederholung zum Sommersemester 2007.
Advertisements

Proposal for the Establishment and Funding of the Cluster of Excellence Origin and Structure of the Universe The Cluster of Excellence for Fundamental.
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Theories of gravity in 5D brane-world scenarios
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
STRING THEORY: CHALLENGES AND PROSPECTS John H. Schwarz October 2008.
Hartmut Abele Knoxville, 8 June 2006 Neutron Decay Correlation Experiments.
A Short Introduction to Particle Physics What do we know? How do we know? What next? “Is there physics beyond the Standard Model?”
Cosmodynamics. Quintessence and solution of cosmological constant problem should be related !
Tony Liss Saturday Physics for Everyone November 9, 2013 (With debts to Chris Quigg, Leonard Susskind, Hitoshi Murayama)
Nuclear Physics UConn Mentor Connection Mariel Tader.
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Nailing Electroweak Physics (aka Higgs Hunting) with the Next Linear Collider Bob Wilson High Energy Physics Group CSU Physics Research Evening November.
Smashing the Standard Model: Physics at the CERN LHC
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Modern Physics LECTURE II.
Wednesday, Mar. 23, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #14 Wednesday, Mar. 23, 2005 Dr. Jae Yu Elementary Particle Properties Forces.
Astro-2: History of the Universe Lecture 11; May
The Neutron Beta-Decay Exploring the properties of fundamental interactions Hartmut Abele Bar Harbor A,B,C,D,…  The Neutron Alphabet.
Phenomenology of bulk scalar production at the LHC A PhD oral examination A PhD oral examination By Pierre-Hugues Beauchemin.
The Standard Model and Beyond Harrison B. Prosper 6 July, 2010 Fermilab Summer Lecture Series.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Strings: Theory of Everything, Something, or Nothing? Robert N. Oerter.
ROY, D. (2011). Why Large Hadron Collider?. Pramana: Journal Of Physics, 76(5), doi: /s
Gravity at Micron Hartmut Abele. Hartmut Abele, Universität Heidelberg 2 Galileo in Pisa Objekt: Neutron Höhe: ~ 50  m Fallhöhe > 50  m Fallhöhe < 50.
Lecture 15: Beta Decay 23/10/2003 Neutron beta decay: light particles or “leptons”, produced in association. Neutrino presence is crucial to explain.
CERN, January 2009 Evading the CAST bound with a chameleon Philippe Brax, IPhT Saclay.
Center for theoretical Physics at BUE
Lecture 2:Research frontiers 1 9/9/ FYPC Most recent long range planning reports: FYPC (Canada), NSAC (USA) Collision products at RHIC.
School of Arts & Sciences Dean’s Coffee Presentation SUNY Institute of Technology, February 4, 2005 High Energy Physics: An Overview of Objectives, Challenges.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Varying fundamental constants - a key property and key problem of quintessence.
Phys 102 – Lecture 26 The quantum numbers and spin.
1 Cosmological Constant as a Manifestation of the Hierarchy Pisin Chen Leung Center for Cosmology and Particle Astrophysics National Taiwan University.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Electricity and Magnetism Explore the second of the four fundamental forces in nature –Gravity –Electricity and Magnetism –Weak Nuclear Force –Strong Force.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
IB Physics Mr. Jean April 16 th, The plan: SL Practice Exam questions HL Particle Physics –Electrons –Protons –Neutrons –Quarks –Gluons –Photos.
INSTITUT MAX VON LAUE - PAUL LANGEVIN V.V.Nesvizhevsky QUARKS-2008 Neutron scattering and extra short-range interactions - Neutron constraints.
Anthropology Series In the Beginning How did the Universe begin? Don’t know!
Large extra dimensions and CAST Biljana Lakić Rudjer Bošković Institute, Zagreb Joint ILIAS-CAST-CERN Axion Training, , CERN Joint ILIAS-CAST-CERN.
Modern Physics. Reinventing Gravity  Einstein’s Theory of Special Relativity  Theorizes the space time fabric.  Describes why matter interacts.  The.
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
XXXVI th Recontres de Moriond Very High Energy Phenomena in the Universe 22 January 2001 Ephraim Fischbach Department of Physics Purdue University, West.
High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele INPC 2013, 3 June 2013 qBounce- and PERC-Collaboration |1 > 1.4 peV |3 > 3.32.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Searching for in High Mass Dilepton Spectrum at CDF, Fermilab ADD model Drell-Yan production of a graviton of varying string scale M S = M Pl(4+n) [4]
The Atomic Models of Thomson and Rutherford Rutherford Scattering The Classic Atomic Model The Bohr Model of the Hydrogen Atom Successes & Failures of.
ANTIHYDROGEN Gravitational States above material surface A. Voronin P.Froelich V.Nesvizhevsky.
qBOUNCE: a quantum bouncing ball gravity spectrometer
Fulfilling Einstein’s Dream Institute for Advanced Study
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Gravitational Quantum States of Antihydrogen
dark matter Properties stable non-relativistic non-baryonic
The symmetry of interactions
Quantum Spacetime and Cosmic Inflation
cosmodynamics quintessence fifth force
Search For New Physics Chary U of S.
Dark Energy as a Manifestation of the Hierarchy
What do we hope to understand?
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele Vienna, 1 December 2012 qB OUNCE : Spectroscopy of Gravity |1 > 1.4 peV |3 > 3.32 peV a, A, B, C

Show Case I: Test of Gravitation at Short Distances with Quantum I nterference Julio Gea-Banacloche, Am. J. Phys.1999 Quantum interference: sensitivity to fifth forces Hartmut Abele, Atominstitut, TU Wien Time Rafael Reiter, Bernhard Schlederer, David Sepp Simulation: Reiter, Schlederer, Seppi Height, 40 µm

Key Technique: Gravity Resonance Spectroscopy 3 atomic clocks nuclear magnetic resonance spectroscopy spin echo technique quantum metrology gamma resonance spectroscopy Test Newton‘s law at short distances: String Theories Dark Matter Dark Energy |1 > 1.4 peV |3 > 3.32 peV Nature Physics, 1 June 2011 High Precision - Low Energy Hartmut Abele, Atominstitut, TU Wien

Rabi-Gravity-Spectroscopy GRS: T.J., H.A. et al., Nature Physics |1 > 1.4 peV |3 > 3.32 peV a 2-level system can be considered as a Spin ½ - System Vibrating mirror Alternating Magnetic gradient fields QS: V.N., H.A. et al., Nature 2002

Side-band excitation Gähler, Felber, Golub et al. 5

The kicked rotor M. Bienert, F. Haug and W. P. Schleich, Raizen 6 Hartmut Abele, Vienna University of Technology

Gravity Resonance Spectroscopy -Quantum states in the gravity potential of the earth and coherence superposition Search for deviations from Newtons gravity law at short distances -Large extra dimensions -Dark matter particles -Dark energy Tests of weak interaction with neutron beta-decay experiments -Experiment PERC Scientific Programme for ESS /Broad overview of the field Outline 7

Spallation Source Reactor source Neutron sources

9 Hartmut Abele, Technische Universität Wien

Neutron Production Velocity v [m/s]

The future: FRM2, ESS 11

Tool: Ultra-Cold Neutrons Strong Interaction: V ~ 100 neV Kinetic Energy: < 100 neV 3m/s < v < 20m/s Magnetism, Zeeman splitting : 120 neV/T Energy in the earth‘s gravitational field: E = mgh 100neV/m

Hartmut Abele, Technische Universität München 13 Hartmut Abele 13 Quantum Bounce ? Cold-Source at 40 K Hydrogen Atom -Electron bound in proton potential -Bohr radius = 1 A -Ground state energy of 13 eV -3 dim. -Schrödinger Equ. -Legrendre Polynomials System Neutron & Earth -Neutron bound in the gravity potential of the earth - = 6 µm -Ground state energy of 1.4 peV -1 dim. -Schrödinger Equ. -Airy Functions

Gravity and Quantum Mechanics 14 Schrödinger equation : boundary conditions: with 2nd mirror at height Solutions: Airy-functions: Ai & Bi EnEn EnEn 1 st state 1.41peV 2 nd state 2.46peV2.56peV 3 rd state 3.32peV4.2 peV V [peV]

Show Case I: Rabi-type Spectroscopy of Gravity 15 Resonance Spectroscopy Technique to explore gravity T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

neutron mirror UCN State Selection by a rough neutron mirror 4.5 days of beam time 3600 events (background subtracted) fit: free parameters: result: track detector rough mirror T. Jenke, ÖPG 2012

6 m/s < v x < 7.2 m/s Horizontal velocity 17 Hartmut Abele, Technische Universität München T. Jenke, Diploma thesis, 2008

Frequency Reference for Gravitation Hartmut Abele, Vienna University of Technology 18 |1 > 1.4 peV |3 > 3.32 peV Based on natural constants: ⁻Mass of the neutron m ⁻Planck constant ħ ⁻Acceleration of earth g ⁻ Based on 2 natural constants : ⁻Mass of the neutron m ⁻Planck constant ħ Plus Acceleration of earth g

Discoveries: the dark universe Spectroscopy of Gravity -It does not use electromagnetic forces -It does not use coupling to em Potential Hyothetical gravity-like forces - Axions? - Chameleons? constraint on any possible new interaction 19 Axion eV Scale

20

21 Felicitas Pauss

The cosmological Parameters

Neutrons test Newton Strength  Range 23 Hypothetical Gravity Like Forces Extra Dimensions: The string and D p -brane theories predict the existence of extra space-time dimensions Infinite-Volume Extra Dimensions: Randall and Sundrum Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons Axion → 0.2 µm < < 0.2 cm Scalar boson. Cosmological consideration Bosons from Hidden Supersymmetric Sectors Gauge fields in the bulk (ADD, PRD 1999) →10 6 <  < 10 9 Supersymmetric large Extra Dimensions (B.& C.) →  < 10 6 Chameleon fields-

Show Case: Rabi-type Spectroscopy of Gravity 24 Rabi-type experiment: Resonance Spectroscopy Technique to explore gravity realization of gravity resonance method possible simple setup, no steps high(er) transmission upper mirror introduces 2 nd boundary condition Rabi-type experiment with damping T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee

Gravity Resonance Spectroscopy days of beam time, 116 measurements stat. Significance: stat. accuracy: contrast: T. Jenke, Dissertation (TU Wien, 2011) T. Jenke et.al., arXiv: (2012) [data 2010] T. Jenke, ÖPG eV Scale

AXION: PDG Exclusion Ranges 26

PDG Exclusion Ranges on Axion masses 27 ← ←

Applications I: Spin-dependant short-ranged interactions 28 discovery potential [Setup 2010]: J.E. Moody, F. Wilczek, Phys. Rev. D30, (1984) 3 days of beamtime T. Jenke et.al., arXiv: (2012) T. Jenke, ÖPG 2012

Chameleon fields, Brax et al. PRD 70, (2004) 2 Parameters , n Dark Energy – Scalar Fields 29

Mirrors at z ~ ± d/2 Fit to numerical solution qBounce and Chameleons

Bounds on coupling  -By comparing transition frequency with theoretical expectation: -as long as  > Cite as: arXiv: v1 qBounce and Chameleons

Applications II: Strongly coupled chameleons 32 A.N. Ivanov et.al., arXiv: (2012) T. Jenke et.al., arXiv: (2012) T. Jenke, ÖPG 2012

Feedback from FUNDAMENTAL PHYSICS Convener: T. Soldner, O. Zimmer, H. Abele

Chameleon fields, Brax et al. PRD 70, (2004) 2 Parameters , n Dark Energy – Scalar Fields 34

Casimir Force Atom Example Rb r = 1 Micron Neutron: Casimir force absent Polarizability extremely small: 35

Grand Challenges 36 Sensitive to any force Dark energy search -chameleon fields Dark matter search Large extra dimensions Hypothetical gravity like forces

Participating Institutions: IST Braunschweig Univ. Heidelberg ILL Univ. Jena Univ. Mainz Priority Areas CP-symmetry violation and particle physics in the early universe. The structure and nature of weak interaction and possible extensions of the Standard Model. Tests of gravitation with quantum objects Charge quantization and the electric neutrality of the neutron. New Infrastructure (UCN-Source, cold Neutrons) -* Coordinators (S. Paul, H.A. ) DFG/FWF Priority Programme 1491 Exzellenzcluster ‚Universe‘ München Techn. Univ. München * PTB Berlin Vienna University of Technology *

Priority Programme 1491 Research Area A: CP-symmetry violation and particle physics in the early universe -Neutron EDM  E = eV Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model -Neutron  -decay V – A Theory Research Area C: Relation between gravitation and quantum theory -Neutron bound gravitational quantum states Research Area D: Charge quantization and the electric neutrality of the neutron -Neutron charge Research Area E: New measuring techniques -Particle detection -Magnetometry -Neutron optics

39 Parameters Strength: G F Quark mixing: V ud Ratio: = g A /g V Observables Lifetime  Correlation A Correlation B Correlation C Correlation a Correlation D Correlation N Correlation Q Correlation R Beta Spectrum Proton Spectrum Polarized Spectra Beta Helicity Electron Proton Neutrino Neutron Spin A B C a D R N Neutron Alphabet deciphers the SM High Precision - Low Energy Hartmut Abele, Atominstitut, TU Wien R Q

v- selector Spin flipper Polarizer Decay Volume, 8m Chopper Beam stop Analyzing area A clean, bright and versatile source of neutron decay products Univ.Heidelberg & TU Wien, Mainz, ILL,FRM2,TU Munich n-guide + solenoid: field B 0 polarized, monochromatic n-pulse n + γ-beam stop solenoid, field B1 solenoid, field B 2 p+ + e− window-frame p+ + e− beam B. Maerkisch talk Berlin 2012 Key Instrument: PERC High Flux :  = 2 x cm -2 s -1  Decay rate of 1 MHz / metre Polarizer: 99.7 ± 0.1 % Spin Flipper: ± 0.1 % Analyzer: 100 % 3 He-cells

41 Origin of nature’s lefthandedness Standard Model: Elektroweak interaction 100% lefthanded Grand unified theories: Universe was left-right symmetric at the beginning Parity violation = 'emergent' Order parameter <100% Neutron decay: Correlation B + A:  Mass right handed W-Boson: m R > 280 GeV/c 2  Phase: <  < 0.07 WLWL WRWR

Grand Challenges 42 Sensitive to any theory beyond the Standard Model Left Right Symmetry Supersymmetry Tensor or scalar interactions GUT

Priority Programme 1491 Research Area A: CP-symmetry violation and particle physics in the early universe -Neutron EDM Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model -Neutron  -decay Research Area C: Relation between gravitation and quantum theory -Neutron bound gravitational quantum states Research Area D: Charge quantization and the electric neutrality of the neutron -Neutron charge Research Area E: New measuring techniques -Particle detection -Magnetometry -Neutron optics

The Future: Ramsey-Method Hartmut Abele, Vienna University of Technology 44

Since the Standard Model value for q n requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where q n is equal to zero. Improve limit by two orders of magnitude Charge quantization and the electric neutrality of the neutron.

Progress Report with Galileo in Quantum Land -qBounce: first demonstration of the quantum bouncing ball -Dynamics: time evolution of coherent superposition of Airy-eigenfunctions - Realization of Gravity Resonance Spectroscopy: -Coherent Rabi-Transitions, -|1>  |2> -|1>  |3>, see Nature Physics, 1 June |2>  |3>, |2>  |4> -New Tool for -A Search for a deviation from Newton‘s Law at short distances, where polarizability effects are extremely small, see H.A. et al., PRD 81, (2010) [arXiv: ] -A quantum test of the equivalence principle -Direct limits on axion coupling / chameleons at short distances, qB OUNCE Summary 46 Hartmut Abele, Vienna University of Technology