Chapter 23 Mirrors and Lenses Conceptual questions: 4,5,10,14,15,17

Slides:



Advertisements
Similar presentations
Option G2: Optical Instruments
Advertisements

Cutnell/Johnson Physics 7th edition
Notation for Mirrors and Lenses
Physics 1C Lecture 26B Quiz Grades for Quiz 2 are now online. Avg is again 67% Same as for Quiz 1.
Flat Mirrors Consider an object placed in front of a flat mirror
Chapter 23 Mirrors and Lenses.
→ ℎ
Chapter 31 Images.
Chapter 23 Mirrors and Lenses.
Chapter 36 Image Formation.
Chapter 23 Mirrors and Lenses. Medical Physics General Physics Mirrors Sections 1–3.
Chapter 23 Mirrors and Lenses.
Chapter 26 Geometrical Optics. Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror.
Curved Mirrors Chapter 14 Section 3.
Chapter 23 Mirrors and Lenses. Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p.
Chapter 23 Mirrors and Lenses.
Lecture 23 Mirrors Lens.
Reference Book is Geometric Optics.
Optics: Reflection, Refraction Mirrors and Lenses
Chapter 23 Mirrors and Lenses.
Light: Geometric Optics
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 36 Image Formation. Summary: mirrors Sign conventions: + on the left - on the right Convex and plane mirrors: only virtual images (for real objects)
Image Formation by Mirrors and Lenses
Chapter 33 Lenses and Optical Instruments Refraction: Snell’s Law Example 32-8: Refraction through flat glass. Light traveling in air strikes a.
Ray Diagrams Notes.
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Chapter 23 Mirrors and Lenses.
Mirrors & Lenses Chapter 23 Chapter 23 Learning Goals Understand image formation by plane or spherical mirrors Understand image formation by converging.
Thin Lenses.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 34. Images What is Physics? Two Types of Image
Chapter 14 Light and Reflection
Physics 1C Lecture 26A.
Image Formation. The light rays coming from the leaves in the background of this scene did not form a focused image on the film of the camera that took.
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Chapter 23 Mirrors and Lenses.
Chapter 23 Mirrors and Lenses. Types of Images for Mirrors and Lenses A real image is one in which light actually passes through the image point A real.
Lecture 15 Refraction, Lenses, Aberrations Chapter 23.4  23.7 Outline Atmospheric Refraction Thin Lenses Aberrations.
Chapter 34 Lecture Eight: Images: II. Image Formed by a Thin Lens A thin lens is one whose thickness is small compared to the radii of curvature For a.
Lecture 22 Dispersion and Prisms Total internal Reflection Flat mirrors Convex and Concave.
Geometric Optics This chapter covers how images form when light bounces off mirrors and refracts through lenses. There are two different kinds of images:
Physics 213 General Physics Lecture Last Meeting: Reflection and Refraction of Light Today: Mirrors and Lenses t.
 When light strikes the surface of an object  Some light is reflected  The rest is absorbed (and transferred into thermal energy)  Shiny objects,
Chapter 34 Lecture Seven: Images: I HW 3 (problems): 34.40, 34.43, 34.68, 35.2, 35.9, 35.16, 35.26, 35.40, Due Friday, Sept. 25.
Properties of Reflective Waves Curved Mirrors. Image close to a concave mirror appear:
Chapter 36 Image Formation.
Announcements Two exams down, one to go! No HW this week. Office hours: My office hours today from 2-3 pm (or make an appointment) Always check out
Its now time to see the light…..  A lens is a curved transparent material that is smooth and regularly shaped so that when light strikes it, the light.
Light Reflection and Mirrors.  The Law of Reflection  When a wave traveling in two dimensions encounters a barrier, the angle of incidence is equal.
Dispersion The spreading of light into its color components is called dispersion. When light enters a prism, the refracted ray is bent towards the normal,
The law of reflection: The law of refraction: Image formation
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Chapter 36 Image Formation 1: 1. Flat mirror 2. Spherical mirrors.
Mirrors. Mirrors and Images (p 276) Light travels in straight lines, this is the reason shadows and images are produced (p 277) Real images are images.
Mirror and Reflection.
Chapter Reflection and Mirrors. Millions of light rays reflect from objects and enter our eyes – that’s how we see them! When we study the formation of.
Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance.
1 The law of reflection: The law of refraction: Snell’s Law Image formation.
Image Formation. The light rays coming from the leaves in the background of this scene did not form a focused image on the film of the camera that took.
Part 10 Optics --Mirrors and Lenses Chapter 24 Geometric Optics.
Basics Reflection Mirrors Plane mirrors Spherical mirrors Concave mirrors Convex mirrors Refraction Lenses Concave lenses Convex lenses.
Reflection and Refraction of Light From “College Physics” Serway and Faughn with modifications.
Geometrical Optics.
Refraction & Lenses. Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent.
Chapter 32Light: Reflection and Refraction Formation of Images by Spherical Mirrors Example 32-7: Convex rearview mirror. An external rearview car.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
College Physics by Serway and Faughn Chapter 23 and 25
Chapter 23 Mirrors and Lenses © 2014 A. Dzyubenko.
Mirrors and Lenses Images can be formed by reflection from mirrors.
Presentation transcript:

Chapter 23 Mirrors and Lenses Conceptual questions: 4,5,10,14,15,17 Quick Quizzes: 1,2,4,6 Problems: 17,44,53,61

Types of Images for Mirrors and Lenses A real image is one in which light actually passes through the image point Real images can be displayed on screens A virtual image is one in which the light does not pass through the image point Virtual images cannot be displayed on screens

The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to the mirror or lens Denoted by q The lateral magnification of the mirror or lens is the ratio of the image height to the object height Denoted by M Flat Mirror

QUICK QUIZ 23.1 In the overhead view of the figure below, the image of the stone seen by observer 1 is at C. Where does observer 2 see the image––at A, at B, at C, at D, at E, or not at all?

Day and Night Settings on Auto Mirrors

Concave Mirror The mirror has a radius of curvature of R Its center of curvature is the point C Point V is the center of the spherical segment A line drawn from C to V is called the principle axis of the mirror

Image Formed by a Concave Mirror Geometry shows the relationship between the image and object distance is Magnification is h’ is negative when the image is inverted with respect to the object

Focal Length Shown by Parallel Rays

Focal Length Focal length, the distance between the focal point and the mirror, is half the radius The mirror equation can be expressed as f = R / 2

Convex Mirrors A convex mirror is also called a diverging mirror

Ray Diagram Ray 1 is drawn parallel to the principle axis and is reflected back through the focal point, F Ray 2 is drawn through the focal point and is reflected parallel to the principle axis Ray 3 is drawn through the center of curvature and is reflected back on itself

Ray Diagram for Concave Mirror, p > R

Based on conceptual question 17 Draw a ray diagram for a. a convex mirror b. a concave mirror with the object at a distance p>R

Ray Diagram for a Convex Mirror

Ray Diagram for a Concave Mirror, p < f

True or false? (a) The image of an object placed in front of a concave mirror is always upright. (b) The height of the image of an object placed in front of a concave mirror must be smaller than or equal to the height of the object. (c) The image of an object placed in front of a convex mirror is always upright and smaller than the object.

Problem 17 A child holds a candy bar 10.0 cm in front of a convex mirror and notices that the image is only one-half the size of the candy bar. What is the radius of curvature of the mirror?

Images Formed by Refraction When n2 > n1, Object distance, image distance and radius of curvature are related by the equation: Real images are formed on the side opposite from the object Sign conventions – Table 23.2

Sign convention for refracting surfaces

Flat Refracting Surface The image and the object are on the same side of the surface. The image is virtual

QUICK QUIZ 23.2 A person spear fishing from a boat sees a fish located 3 m from the boat at an apparent depth of 1 m. To spear the fish, should the person aim at, (b) above, or (c) below the image of the fish?

Problem 53 A parallel beam of light enters a glass hemisphere perpendicular to the flat face, as shown in Figure P23.53. The radius is R = 6.00 cm, and the index of refraction is n = 1.560. Determine the point at which the beam is focused. (Assume paraxial rays; that is, all rays are located close to the principal axis.)

Conceptual question 10. Why does a clear stream appear to be shallower than it actually is?

Atmospheric Refraction and Mirages A mirage can be observed when the air above the ground is warmer than the air at higher elevations The rays in path B are directed toward the ground and then bent by refraction The observer sees both an upright and an inverted image

Thin Lens Shapes These are examples of converging lenses They have positive focal lengths They are thickest in the middle

Thin Diverging Lenses These are examples of diverging lenses They have negative focal lengths They are thickest at the edges

Lens Equations The geometric derivation of the equations is very similar to that of mirrors

Sign Conventions for Thin Lenses Quantity Positive When Negative When Object location (p) Object is in front of the lens Object is in back of the lens Image location (q) Image is in back of the lens Image is in front of the lens Image height (h’) Image is upright Image is inverted R1 and R2 Center of curvature is in back of the lens Center of curvature is in front of the lens Focal length (f) Converging lens Diverging lens

The Lens Maker’s formulae

Ray Diagrams for Thin Lenses The first ray is drawn parallel to the first principle axis and then passes through (or appears to come from) one of the focal lengths The second ray is drawn through the center of the lens and continues in a straight line The third ray is drawn from the other focal point and emerges from the lens parallel to the principle axis

Ray Diagram for Converging Lens, p > f The image is real The image is inverted

Ray Diagram for Converging Lens, p < f The image is virtual The image is upright

Ray Diagram for Diverging Lens The image is virtual The image is upright

Conceptual questions 5. You are taking a picture of yourself with a camera that uses an ultrasonic range finder to measure the distance to the object. When you take a picture of yourself in a mirror with this camera, your image is out of focus. Why? 14. Lenses used in sunglasses whether converging or diverging, are always designed such that the middle of the lens curves away from the eye. Why?

QUICK QUIZ 23.4 A plastic sandwich bag filled with water can act as a crude converging lens in air. If the bag is filled with air and placed under water, is the effective lens (a) converging or (b) diverging?

QUICK QUIZ 23.6 An object is placed to the left of a converging lens. Which of the following statements are true and which are false? (a) The image is always to the right of the lens. (b) The image can be upright or inverted. (c) The image is always smaller or the same size as the object.

Combination of Thin Lenses, example

Problem 44. Two converging lenses having focal lengths of 10 Problem 44. Two converging lenses having focal lengths of 10.0 cm and 20.0 cm are placed 50.0 cm apart, as shown in Figure. The final image is to be located between the lenses, at the position indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification? (c) Is the final image upright or inverted?

Problem 61 The lens maker’s equation for a lens with index n1 immersed in a medium with index n2 takes the form 1/f=(n1/n2-1)(1/R1-1/R2) A thin diverging glass lens (index = 1.50) with R1 = –3.00 m and R2 = –6.00 m is surrounded by air. An arrow is placed 10.0 m to the left of the lens. Determine the position of the image. Repeat with the arrow and lens immersed in water (index = 1.33); (c) a medium with an index of refraction of 2.00.

Spherical Aberration Results from the focal points of light rays far from the principle axis are different from the focal points of rays passing near the axis For a mirror, parabolic shapes can be used to correct for spherical aberration

Chromatic Aberration Different wavelengths of light refracted by by a lens focus at different points Violet rays are refracted more than red rays The focal length for red light is greater than the focal length for violet light Chromatic aberration can be minimized by the use of a combination of converging and diverging lenses

Conceptual questions Question 4. Explain why a mirror cannot give rise to chromatic aberration. Question 15. Why does a focal length of a mirror not depend on the mirror material when the focal length of a lens depends on the lens material?

True or false? (a) The image of an object placed in front of a concave mirror is always upright. (b) The height of the image of an object placed in front of a concave mirror must be smaller than or equal to the height of the object. (c) The image of an object placed in front of a convex mirror is always upright and smaller than the object.

Review questions 1. What is the focal length of a flat mirror? a. 0 positive infinite Negative 2. The magnification of a 3 cm object placed 5 cm from a certain lens is -1. What is the focal distance of the lens? 0.4 cm 0.5 cm 2.5 cm 5.0 cm

3. Which of the following is responsible for mirage? a. diffraction b. reflection c. refraction d. dispersion 4. An alligator sits 1 m below the surface of water of index of refraction n=1.4. The alligator’s view of objects above the surface is restricted to a circular window at the surface of radius a. 0.5 m b. 1 m c. 2 m d. 2.6 m