1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.

Slides:



Advertisements
Similar presentations
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
Advertisements

1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: stationary processes Original citation: Dougherty, C. (2012) EC220 -
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: introduction Original citation: Dougherty,
Augmented Dickey-Fuller Test Equation Dependent Variable: D(LGDPI) Method: Least Squares Sample (adjusted): Included observations: 44 after adjustments.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: tests of nonstationarity: example and further complications Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012)
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
Random effects estimation RANDOM EFFECTS REGRESSIONS When the observed variables of interest are constant for each individual, a fixed effects regression.
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: nonstationary processes Original citation: Dougherty, C. (2012) EC220.
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
Stationary process NONSTATIONARY PROCESSES 1 In the last sequence, the process shown at the top was shown to be stationary. The expected value and variance.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
TESTING A HYPOTHESIS RELATING TO THE POPULATION MEAN 1 This sequence describes the testing of a hypothesis at the 5% and 1% significance levels. It also.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: continuous random variables Original citation: Dougherty, C. (2012)
1 A MONTE CARLO EXPERIMENT In the previous slideshow, we saw that the error term is responsible for the variations of b 2 around its fixed component 
DERIVING LINEAR REGRESSION COEFFICIENTS
EC220 - Introduction to econometrics (chapter 12)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
1 PREDICTION In the previous sequence, we saw how to predict the price of a good or asset given the composition of its characteristics. In this sequence,
EC220 - Introduction to econometrics (review chapter)
1 UNBIASEDNESS AND EFFICIENCY Much of the analysis in this course will be concerned with three properties of estimators: unbiasedness, efficiency, and.
FIXED EFFECTS REGRESSIONS: WITHIN-GROUPS METHOD The two main approaches to the fitting of models using panel data are known, for reasons that will be explained.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 CONTINUOUS RANDOM VARIABLES A discrete random variable is one that can take only a finite set of values. The sum of the numbers when two dice are thrown.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification.
CONSEQUENCES OF AUTOCORRELATION
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
EC220 - Introduction to econometrics (chapter 8)
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
TYPE II ERROR AND THE POWER OF A TEST A Type I error occurs when the null hypothesis is rejected when it is in fact true. A Type II error occurs when the.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
AUTOCORRELATION 1 Assumption C.5 states that the values of the disturbance term in the observations in the sample are generated independently of each other.
1 COVARIANCE, COVARIANCE AND VARIANCE RULES, AND CORRELATION Covariance The covariance of two random variables X and Y, often written  XY, is defined.
1 Y SIMPLE REGRESSION MODEL Suppose that a variable Y is a linear function of another variable X, with unknown parameters  1 and  2 that we wish to estimate.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
1 ASYMPTOTIC PROPERTIES OF ESTIMATORS: THE USE OF SIMULATION In practice we deal with finite samples, not infinite ones. So why should we be interested.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
4 In our case, the starting point should be the model with all the lagged variables. DYNAMIC MODEL SPECIFICATION General model with lagged variables Static.
HETEROSCEDASTICITY 1 This sequence relates to Assumption A.4 of the regression model assumptions and introduces the topic of heteroscedasticity. This relates.
INSTRUMENTAL VARIABLES 1 Suppose that you have a model in which Y is determined by X but you have reason to believe that Assumption B.7 is invalid and.
1 HETEROSCEDASTICITY: WEIGHTED AND LOGARITHMIC REGRESSIONS This sequence presents two methods for dealing with the problem of heteroscedasticity. We will.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and tests for nonstationarity are no exception. TESTS OF NONSTATIONARITY: INTRODUCTION

2 They are often described as tests for unit roots, for reasons related to the theory of difference equations that need not concern us here. TESTS OF NONSTATIONARITY: INTRODUCTION

3 Before embarking on tests of nonstationarity, it is prudent to recognize that we should not have unrealistic expectations concerning what can be achieved. To illustrate the discussion, suppose that we believe a process can be represented by Y t =  2 Y t–1 +  t. TESTS OF NONSTATIONARITY: INTRODUCTION

4 If  2 = 1, the process is nonstationary. If  2 = 0.99, it is stationary. Can we really expect to be able to discriminate between these two possibilities? TESTS OF NONSTATIONARITY: INTRODUCTION

5 Obviously not. We are seldom able to make such fine distinctions in econometrics. We have to live with the fact that we are unlikely ever to be able to discriminate between nonstationarity and highly autocorrelated stationarity. TESTS OF NONSTATIONARITY: INTRODUCTION

6 We will start with the first-order autoregressive model Y t =  1 +  2 Y t–1 +  t +  t, including a time trend as well as an autoregressive process. TESTS OF NONSTATIONARITY: INTRODUCTION

7 For the time being we will assume that the disturbance term is iid and we will emphasize this by writing it as  t rather than u t. We will relax the iid assumption later on. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives 8 We will consider the various special cases that arise from the following possibilities: –1 <  2 < 1 or  2 = 1  = 0 or  ≠ 0 or TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives 9 We will exclude  2 > 1 because the explosive process implied by it is seldom encountered in economics. We will also exclude  2 < –1 because it implies an implausible process. or TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (a) Case (b) Case (c) Case (d) Case (e) TESTS OF NONSTATIONARITY: INTRODUCTION 10 This gives us four basic possibilities. For one of them, it is important to separate the two sub-cases  1 = 0 and  1 ≠ 0. This gives us five cases in all. In the table,  1 = * means  1 is unrestricted. or

General model Alternatives Case (a) 11 or Case (a) is a stationary AR(1) process of the kind studied at length in Chapter 11. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (b) 12 or Case (b) is a random walk. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (c) 13 or Case (c) is a random walk with drift. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (d) 14 or Case (d) is a stationary autoregressive process around a deterministic trend. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (e) 15 or Case (e) implies a model that is doubly nonstationary, being a random walk (with drift if  1 ≠ 0) around a deterministic time trend. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (e) 16 or Case (e) can be excluded because it is implausible. Lagging and substituting once, we obtain the equation shown. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (e) 17 or Lagging and substituting t times, we can express Y t in terms of the initial Y 0, the innovations, and a convex quadratic expression for t. It is not reasonable to suppose that any (ordinary) time series process can be characterized as a convex quadratic function of time. TESTS OF NONSTATIONARITY: INTRODUCTION

General model Alternatives Case (a) Case (b) Case (c) Case (d) TESTS OF NONSTATIONARITY: INTRODUCTION 18 or Our objective is to determine which of cases (a) – (d) provides the best representation of a given process. Two approaches have been advocated.

General model Alternatives Case (a) Case (b) Case (c) Case (d) TESTS OF NONSTATIONARITY: INTRODUCTION 19 or One is to start with the general model at the top of the slide and then conduct a series of tests that might lead to a simplification to one of cases (a) to (d).

General model Alternatives Case (a) Case (b) Case (c) Case (d) TESTS OF NONSTATIONARITY: INTRODUCTION 20 or This has the intellectual appeal of implementing the general-to-specific approach. However, as will be seen, the tests involved often have low power, and this can give rise to ambiguity that cannot be resolved.

General model Alternatives Case (a) Case (b) Case (c) Case (d) TESTS OF NONSTATIONARITY: INTRODUCTION 21 or The other approach is pragmatic. One starts by plotting the data and assessing whether there is evidence of a trend. If there is not, then one limits the investigation to cases (a) and (b). If there is, one considers cases (c) and (d). This is the approach that will be adopted in the next two slideshows.

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 13.4 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics