Quadratic Functions and Their Properties

Slides:



Advertisements
Similar presentations
Parabola Conic section.
Advertisements

THE GRAPH OF A QUADRATIC FUNCTION
6.1/6.2/6.6/6.7 Graphing , Solving, Analyzing Parabolas
By: Silvio, Jacob, and Sam.  Linear Function- a function defined by f(x)=mx+b  Quadratic Function-a function defined by f(x)=ax^2 + bx+c  Parabola-
Chapter 10 Quadratic Equations and Functions Section 5 Graphing Quadratic Functions Using Properties.
The Graph of a Quadratic Function
THE GRAPH OF A QUADRATIC FUNCTION
QUADRATIC EQUATIONS AND FUNCTIONS
Quadratic Functions, Quadratic Expressions, Quadratic Equations
Quadratic Functions Review / Warm up. f(x) = ax^2 + bx + c. In this form when: a>0 graph opens up a 0 Graph has 2 x-intercepts.
Solving Quadratic Equations by Graphing
Table of Contents Graphing Quadratic Functions – Concept A simple quadratic function is given by The graph of a quadratic function in called a parabola.
Solving Quadratic Equation by Graphing
Chapter 7 Quadratic Equations and Functions
Properties of Quadratics Chapter 3. Martin-Gay, Developmental Mathematics 2 Introduction of Quadratic Relationships  The graph of a quadratic is called.
Copyright © 2011 Pearson Education, Inc. Quadratic Functions and Inequalities Section 3.1 Polynomial and Rational Functions.
The General Quadratic Function Students will be able to graph functions defined by the general quadratic equation.
Section 5.1 Introduction to Quadratic Functions. Quadratic Function A quadratic function is any function that can be written in the form f(x) = ax² +
Quadratic Functions and Their Graphs
Graphing Quadratic Equations in Vertex and Intercept Form
Definitions 4/23/2017 Quadratic Equation in standard form is viewed as, ax2 + bx + c = 0, where a ≠ 0 Parabola is a u-shaped graph.
Quadratic Vocabulary Words to graph by….
Solving Quadratic Equations by Graphing Quadratic Equation y = ax 2 + bx + c ax 2 is the quadratic term. bx is the linear term. c is the constant term.
X-Intercepts/Roots: Discriminant and the Quadratic Formula 1. Review: X-Intercepts are the Roots or Solutions x y Y = f(x) = 0 at the x-intercepts (curve.
2.3 Quadratic Functions. A quadratic function is a function of the form:
Characteristics of Quadratics
GRAPHING QUADRATIC FUNCTIONS
Direction: _____________ Width: ______________ AOS: _________________ Set of corresponding points: _______________ Vertex: _______________ Max or Min?
Vertex and Axis of Symmetry. Graphing Parabolas When graphing a line, we need 2 things: the y- intercept and the slope When graphing a parabola, we need.
Chapter 2 POLYNOMIAL FUNCTIONS. Polynomial Function A function given by: f(x) = a n x n + a n-1 x n-1 +…+ a 2 x 2 + a 1 x 1 + a 0 Example: f(x) = x 5.
Quadratic Functions and Modeling
10.1 Quadratic GRAPHS!.
Solving Quadratic Equations Unit Review. Solving Quadratics By Graphing.
Section 3.3 Quadratic Functions. A quadratic function is a function of the form: where a, b, and c are real numbers and a 0. The domain of a quadratic.
Warm Up Important Properties: 1.The graph will open up if ‘a’ ___ 0 and down if ‘a’ ___ 0 3.The vertex formula for: vertex format is: standard format is:
Section 8.7 More About Quadratic Function Graphs  Completing the Square  Finding Intercepts 8.71.
Big Idea: -Graph quadratic functions. -Demonstrate and explain the effect that changing a coefficient has on the graph. 5-2 Properties of Parabolas.
CHAPTER 10 LESSON OBJECTIVES. Objectives 10.1 Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum.
Do Now: Solve the equation in the complex number system.
How does the value of a affect the graphs?
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
Key Components for Graphing a Quadratic Function.
GRAPH QUADRATIC FUNCTIONS. FIND AND INTERPRET THE MAXIMUM AND MINIMUM VALUES OF A QUADRATIC FUNCTION. 5.1 Graphing Quadratic Functions.
Unit 2 – Quadratic Functions & Equations. A quadratic function can be written in the form f(x) = ax 2 + bx + c where a, b, and c are real numbers and.
Parabolas Because you need them, for physics and stuff.
Solving Quadratic Equation by Graphing
Introduction to Quadratics
5-2 Properties of Parabolas
Introductory Algebra Glossary
Algebra I Section 9.3 Graph Quadratic Functions
Quadratic Functions and Their Properties
Standard MM2A3. Students will analyze quadratic functions in the forms f(x) = ax2 + bx + c and f(x) = a(x – h)2 + k. c. Investigate and explain characteristics.
Linear and Quadratic Functions
Solving Quadratic Equation and Graphing
ALGEBRA I : SECTION 9-1 (Quadratic Graphs and Their Properties)
Solving a Quadratic Equation by Graphing
parabola up down vertex Graph Quadratic Equations axis of symmetry
3.1 Quadratic Functions and Models
Find the x-coordinate of the vertex
THE GRAPH OF A QUADRATIC FUNCTION
Review: Simplify.
Chapter 10 Final Exam Review
3.1 Quadratic Functions and Models
Linear and Quadratic Functions
Section 10.2 “Graph y = ax² + bx + c”
Graphing Quadratic Equations
Quadratic Functions and Their Properties
QUADRATIC FUNCTION PARABOLA.
9-3 Graphing y = ax + bx + c up 1a. y = x - 1 for -3<x<3
Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions.
Presentation transcript:

Quadratic Functions and Their Properties Section 4.3 Quadratic Functions and Their Properties

QUADRATIC FUNCTIONS A quadratic function of x is a function that can be represented by an equation of the form f (x) = ax2 + bx + c where a, b, and c are real numbers and a ≠ 0. The domain of a quadratic function is all real numbers.

GRAPHS OF QUADRATIC FUNCTIONS The graph of a quadratic function is a parabola. The parabola opens up if the coefficient of x2 is positive. The parabola opens down if the coefficient of x2 is negative. The vertex of a parabola is the lowest point on a parabola that opens up or the highest point on a parabola that opens down. The axis of symmetry is the vertical line passing through the vertex of a parabola.

STANDARD FORM OF QUADRATIC FUNCTIONS Every quadratic function given by f (x)  = ax2 + bx + c can be written in the standard form of a quadratic function: f (x) = a(x − h)2 + k, a ≠ 0 The graph of f is a parabola with vertex (h, k). The parabola opens up if a is positive, and it opens down if a is negative. To find the standard form of a quadratic function, use the technique of completing the square.

VERTEX FORMULA The vertex of the graph of f (x)  = ax2 + bx + c is

SUMMARY OF PROPERTIES OF THE GRAPH OF A QUADRATIC FUNCTION f (x)  = ax2 + bx + c, a ≠ 0 Vertex = Axis of Symmetry: the line x = −b/(2a) Parabola opens up if is a > 0; the vertex is a minimum point. Parabola opens down if is a < 0; the vertex is a maximum point.

x-INTERCEPTS OF A QUADRATIC FUNCTION If the discriminant b2 − 4ac > 0, then graph of f (x) = ax2 + bx + c has two distinct x-intercepts so it crosses the x-axis in two places. If the discriminant b2 − 4ac = 0, then graph of f (x) = ax2 + bx + c has one x-intercepts so it touches the x-axis in at its vertex. If the discriminant b2 − 4ac < 0, then graph of f (x) = ax2 + bx + c has no x-intercept so it does not cross or touch the x-axis.

MAXIMUM OR MINIMUM VALUE OF A QUADRATIC FUNCTION If a is positive, then the vertex (h, k) is the lowest point on the graph of f (x)  = a(x − h)2 + k, and the y-coordinate k of the vertex is the minimum value of the function f. If a is negative, then the vertex (h, k) is the highest point on the graph of f (x)  = a(x − h)2 + k, and the y-coordinate k of the vertex is the maximum value of the function f. In either case, the maximum or minimum value is achieved when x = h.