Verification of SubDyn and HydroDyn Results Summery Evan Gaertner
Case 1: Monopile Distributed Buoyancy
Case 2: Tripod Buoyancy Distributed Buoyancy: A) Horizontal (M ember 45) B) Vertical, Tapered ( Member 46) C) Angled ( Member 20) Tripod: Total Buoyancy F Bx [N] F By [N] F Bz [N] M Bx [Nm] M By [Nm] M Bz [Nm] HydroDyn-1.113E E E E E E-02 OTC: HydroDyn* E+06 OTC: STAR-CCM+* E+06 * Includes joint overlap
Case 2: Tripod Distributed Buoyancy Horizontal Vertical, Tapered Angled
Case 3: Jacket Total Buoyancy Jacket: Total Buoyancy F Bx [kN] F By [kN] F Bz [kN] M Bx [kNm] M By [kNm] M Bz [kNm] External E Internal E Total E Total (H. Song No Overlap) E+03 HydroDyn
Case 4: Monopile Morison Loads Current: Linear velocity distribution from 0 to 2 m/s at MSL
Case 5: Monopile Morison Loads Regular Waves: T = 10s, H s = 6m
Case 6: Monopile Morison Loads Irregular Waves: JONSWAP T = 10s, H s = 8m
Case 7: Natural Frequencies Monopile Ansys [Hz] SubDyn [Hz] Difference % % % % % % % % % % % % % % % % % % % % Tripod Ansys [Hz] SubDyn [Hz] Difference % % % % % % % % % % % % % % % % % % % % Jacket Ansys [Hz] SubDyn [Hz] Difference % % % % % % % % % % % % % % % % % % % % To Transition PieceTo Tower Top
Natural Frequencies, Tripod Tripod OldNew Ansys [Hz] SubDyn [Hz] Difference SubDyn [Hz] Difference % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
Case 8: Reaction Loads Ansys [N] SubDyn [N] Difference Monopile E E % Tripod E E % Jacket E E % Under Self Weight
OC4 Paper: Jacket Masses Figure 2: HydroDyn Mass (t) RNA350 Tower Jacket
OC4 Paper: Jacket Masses Figure 3: HydroDyn Mass (t) Hydrodynamic added mass to MSL-3,883.8 Water mass in free flooded legs to MSL183 Growth mass189.84