Biology Presentation Group member 1.Babjey 2.Jamyang Dorji 3.Doe Kumar Kharka 4.Ugyen Dorji.

Slides:



Advertisements
Similar presentations
TRANSPORT IN PLANTS.
Advertisements

Noun. Verb Activity The process of adsorb(v) light(n) energy(n) by chlorophyll(n) and transform(v) it into chemical(adj.) energy(n) for use(v) in the.
Photosynthesis Describe, using a word equation, how plants make their own food through photosynthesis.
Nutrition in Plants Chapter 7.
Nutrition in Plants.
Plants and Photosynthesis
Lab 4 1-(Prove the importance of chlorophyll in photosynthesis). 2-Prove the production of starch during the process of photosynthesis 3-Prove the activity.
Flowering Plants Flower Leaf Stem Roots.
Photosynthesis Topic 3.8.
PHOTOSYNTHESI S: A LABORATORY EXPERIMENT THEORETICAL BACKGROUND EXPERIMENT CONCLUSIONS introduction procedure results.
Chapter : Transport in Flowering Plants
Photosynthesis 1 ! Exam booklet !
 Aim of the experiment: To prove that carbon dioxide is produced during respiration in germinating seeds.  Materials required: Round bottom flask. Cork.
Chapter 25: Nutrition in the flowering plant
Photosynthesis.
Water movement through plants
Crash Course on Plants Movement of Materials, Monocots vs. Dicots, Gymnosperms vs. Angiosperms, Plant Parts and Function, and Reproduction.
Photosynthesis and Plant Responses
Leaf Structure and Photosynthesis
Photosynthesis.
Food Production Action in Plants Plant cells  Plant cells contain a jelly-like cytoplasm  They all have a nucleus  They usually have a sap-filled.
Plant Structure & Transport Chapter 13 Objectives: OB46: Associate the transport of water and minerals in the plant with the xylem and the transport of.
IGCSE Coordinated Science Year 1 Energy Transformations in Living Organisms B4.2 & B6.1 Key Notes.
By: Abdulaziz K Al-Kuwari 8C.  The plant is comprised of two systems: The root system The shoot system. The roots absorb the water, which is needed for.
Revision: B4 Photosynthesis PEHN. Section of a leaf.
Shung Tak Catholic English College W.Y.Chan Experiments on photosynthesis Destarching  Starch is a detectable product of photosynthesis.  Presence.
Nutrition in the Flowering Plant You need to…. Learn how water is taken up by plant roots and the path taken by the water through the root, stem.
What can you smell? I´m going to spray some perfume in the corner of the room As soon as you can smell it stand up Now you have 2 min explain what just.
Plants + Movement of Water! By :- Reem Fakhroo 8B.
Water in Plants Chapter 9. Outline  Molecular Movement  Water and Its Movement Through the Plant  Regulation of Transpiration  Transport of Food Substances.
titletitle Transport in flowering plants is provided by vascular tissue xylemphloem transport water substances dissolved in water transport organic nutrients.
Plant physiology, growth and roots
Comparing Photosynthesis and Respiration
TO DO Label the cross section of the leaf on your worksheet Chloroplast Stoma Lower epidermisAir Spaces Upper epidermisSpongy Mesophyll Cuticle Palisade.
SCIENCE Plant Test Review Plant Test Review Good Luck! Good Luck! (Mrs. Yantosh)
The diagram below shows how food is processed in an organism.
Plant Processes. Photosynthesis: most important process in the world Plants produce food Plants produce food used directly by man Plants produce food.
TRANSPORT MECHANISMS WITHIN VASCULAR PLANTS
© Edco 2007 Exploring Science Biology Photosynthesis is the way in which green plants make their food. Photosynthesis needs: –Carbon dioxide –Water –Light.
Plants Plants supply oxygen that most organisms need to stay alive They also supply food for many organisms.
ETV - Quiz on Living Things and Air. 1. Which of the following about composition of unbreathed air is correct? Oxygen: about 16.11%, Carbon dioxide: about.
Transport in Plants. Warm up questions-Xylem or Phloem Which is nearest the centre of a root? Which type of vascular tissue has walls reinforced with.
Importance Of Plants D. Crowley, Importance Of Plants To know why plants are useful to animals.
Testing a leaf for starch.
The Mysterious Tree
Group presentation My topic:
LI :To investigate the presence of starch in leaves
Chapter : Transport in Flowering Plants
Transport in Vascular Plants
The Potometer.
Practical work in Biology
Functions of Plants Stems and Leaves
PHOTOSYNTHESIS.
Photosynthesis and Respiration
Topic 3: The chemistry of life
Physical properties of the cell Metabolism
Review Are plants autotrophic or heterotrophic?
Chapter : Transport in Flowering Plants
Photosynthesis.
Transport in Vascular Plants
Transport in Vascular Plants
Title Water and organisms.
Plant Life Unit Test Review.
Leaf Challenge! Cell wall Nucleus Chloroplast Cell membrane Vacuole
Chapter : Transport in Flowering Plants
13/07/ What do you need to stay alive?
plants and photosynthesis
Presentation transcript:

Biology Presentation Group member 1.Babjey 2.Jamyang Dorji 3.Doe Kumar Kharka 4.Ugyen Dorji

1.Aim: To check the conduction of water through xylem Materials required: - Beaker Stand Knife Water Leafy shoot/ twig

Hypothesis: Vascular bundles in the stem, root, leaf stalks and leaf veins are all continuous and form an unbroken system of tubes. Collectively, they form the transport system throughout. Water and salt travel upwards mainly through xylem and food substances travel up and down in the plants through phloem.

Procedures: 1.Take two leafy shoots (of delicate and fleshy stem) that has been cut under water.) 2.Keep their lower ends dipping in the water 3.Remove about 3cm long, outer ring ( phloem) of the stem ( as in the Beaker A) 4.Keep the central part intact 5.Remove an equal length of the central part ( xylem) keeping the outer part intact ( as in the Beaker B) 6.The shoots are then fix to the stands and are allowed to remain for sometimes with their lower ends still immersed in the water.

Beaker Observations AThe leaves of the twig remain turgid and stand out almost normal BThe leaves and twig get wilted and droop down Result/ Inference: The turgidity and normal standing of the twig in the beaker A indicates that water is conducted through xylem Precautions: The leafy shoots should be cut under the water to prevent any air bubbles getting in. While removing the outer ring, phloem, the xylem should be kept intact and vice- versa. Observation table

Difficulty It was challenging to cut the stem in the water It was difficult to remove the inner xylem parts. Beaker A Beaker B

2.Aim: To prove that temperature is necessary for germination. Materials required: two beakers cotton wool water seeds dropper Hypothesis: Very low as well as very high temperature is unsuitable for germination. A very low temperature inhibits the growth of embryo and a very high temperature destroys its delicate tissue. The temperature should be optimum (i.e C)

Procedure: 1.place the wet cotton wool in beaker 2.then place some seeds(maize) on it and marked it ‘A’ 3.place the wet cotton wool in second beaker 4.place some seeds on it and marked it ‘B’ 5.place the beaker ‘A’ in normal/ordinary room temperature 6.place beaker ‘B’ in refrigerator whose temperature is quite low 7.then observe it

BeakerObservation (after 2 days) AGermination occurred BNo germination occurred Observation table Result: we conclude that temperature is necessary for germination Precautions: we added equal amount of water on the cotton.

3.Aim: To prove that water is necessary for germination Materials required: two beakers cotton wool water seeds dropper Hypothesis: Water for seeds is obtained from its environment. The seed absorbs water all over surface through micropyle. The seeds swell and testa ruptures to allow radical elongate and form root system

Procedure 1.place the wet cotton wool in first beakers 2.then place some seeds( maize) on it and marked it as ‘A’ 3.Place dry cotton wool in second beaker. 4.place some seeds( maize) on it and marked it as ‘B’ 5.keep both the beaker in an ordinary room temperature. 6.observe it

beakerObservation AGermination occur BNo germination Observation table Result: we concluded that water is necessary for germination. Precaution: The temperature should be same for both the beakers

4.Aim: To prove that Oxygen is necessary for germination Materials Required: Two conical flask cotton wool water seeds Dropper Pyrogallic acid Hypothesis: For the rapid cell division and cell growth energy is required. The energy required is available only by reparation i.e. usage of oxygen for respiration. Hence the need of oxygen

Procedure: 1.Place the wet cotton wool in conical flask 2.Then place some seeds on it and marked it as ‘A’ 3.Lower the small test-tube in the conical flask A which it contains alkaline Pyrogallic acid, which absorbs oxygen. (cork it tightly) 4.To second conical flask, place wet cotton wool. Then place seeds on cotton wool and marked ‘B’ 5.In the conical flask B lower the test-tube in the same manner except the test-tube should contain plain water. 6.Keep both the conical flask in an ordinary room temperature.

conical flaskObservation (after two days) AGermination has occurred. B Observation table Result: in both the case germination take place. The result fail. Precautions: The should not be a single drop of alkaline pyrogallic acid on the seeds and cotton wool while lower with test-tube. There should be equal amount of water spread in the cotton wool Failure and Difficulties: The experiment was a failure because pyrogallic acid doesn’t absorb Oxygen. We tried the experiment for twice but the result was same i.e. germination took place in the both beakers. We have kept pyrogallic acid in open air to check whether it is functional or not. The result was still the same.

5.Aim: To see the uptake of water by plant Materials required: Ganong’s photometer leafy shoot safranin Beaker Hypothesis: It is the device use to see the rate of transpiration(rate at which water is absorb by plant and send out through leaf) 29

Procedure: 1.Bring the suitable plant and cut with the sharp knife 2.Fix apparatus as shown in the diagram. 3.Air bubble is introduced in the horizontal graduated capillary tube which is dipping into beaker containing colour water. 4.Observe the process (In order to bring back the air bubble to its original position, release some water from reservoir into the capillary tube by opening the stop-cock).

Observations: liquid in the capillary tube move very fast. In average it took minimum 47s to complete the capillary tube. Results: We have observed that colour water was moving in the capillary tube due to the transpiration pull. Precautions: Entire apparatus should be filled with water so that no air spaces are present. Difficulties: We face difficult to introduce air bubble

6.Aim: To prove that carbon dioxide is necessary for photosynthesis Materials required: Destarched potted plant Conical flask KOH Stand Methyl alcohol or spirit Test-tube Petri dish Iodine solution Spirit lamp Hypothesis: Photosynthesis is the process by which living plants cells, containing chlorophyll, produce food substances (glucose and starch), from CO 2 and water by using the light energy.

Procedures: 1.We have to destarched the plant for 48 hours before the experiment 2.Take the destarched leaves 3.Insert one of the destarched leaves inside the conical flask through split cork which it contains KOH( KOH absorbs CO 2 ) 4.Leave the plant in the sunlight 5.After a few hours (3-4), test the leaf and any other leaf of the plant for starch.

Starch test Dip the that leaf in the boiling water for a minute to kill the cells Boil the leaf in the methylated spirit over a water bath till it becomes pale-white due to the removal of the chlorophyll. Now the leaf becomes hard and brittle. Place the leaf again in the hot water to soften it. Spread the leaf in a petri dish and pour the iodine solution on it The leaf which was exposed to the atmosphere should turn blue-black and the one inside the conical flask containing KOH should not turn blue-black. 28

Result: we concluded that leave that is inside the flask do not turn to dark blue indicating there is no presence of starch. Precaution: we use the soft, fleshy dicot leaf not the rough and hard leaves of dicot. Difficulty: it was very difficult to insert the leaf through the cork into the flask. Not only that our plant was lost and we have to de starch plant for three time. And we do also realize that we must use soft and fleshy dicot leaf

7.Aim: To check the movement of water molecules through cells Materials required: Potatoes Safrenin pins Knife Water Petri dish NaCl solution Hypothesis: The movement water molecules across the semi-permeable membrane from dilute solution to concentrated solution.

Procedures: 1.Cut the potatoes into cube shape of equal sizes. 2.Make holes at the centre of equal height, length and breadth. 3.To the first potato cube add concentrated NaCl solution and place it in the petri-dish containing plain water. 4.To second potato cube add plain water and place it in the petri-dish containing conc. NaCl solution. 5.To third potato cube add plain water and place it in the petri-dish containing plain water. 6.Observe.

Observation table Petri-dishObservations IThe level of concentrated solution increased and coloured water too diffused in. IIThe level of plain water inside the potato cube decreased IIIRemain same. Results: The diffusion of water from dilute to concentrated solution through cells. Precautions: Size of the potato cube should be equal throughout. We struggle to cut same size of potato cube

I II III

We had tried to do the experiment on the osmotic pressure. We had tried to improvise the piston in thistle funnel but we failed to came up with idea. So we gave up that experiment and instead we had done on potato cubes We had use only one type of poto meter since the apparatus is not there The end

Ganong’s potometer 16

21