GaAs:Cr detector testing for FCAL calorimeter at planned linear accelerator ILC V. Elkin, U.Kruchonak XVI научная конференция молодых учёных и специалистов.

Slides:



Advertisements
Similar presentations
P-N JUNCTION.
Advertisements

Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensors for the ILC forward calorimeter K. Afanaciev, Ch. Grah,
17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensor materials K. Afanaciev on behalf of FCAL collaboration.
17-May-15FCAL collaboration meeting. Krakow.. Radiation hardness of GaAs Sensors K. Afanaciev, Ch. Grah, A. Ignatenko, W. Lange, W. Lohmann, M. Ohlerich.
17-May-15FCAL collaboration workshop, Status of sensor R&D in Minsk K. Afanaciev, M. Baturitsky, I. Emeliantchik, A. Ignatenko, A. Litomin, V. Shevtsov.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Radiation Hard Sensors for the BeamCal of the ILC C. Grah FCAL Collaboration 10 th ICATPP Conference, Villa Olmo.
Conduction in Metals Atoms form a crystal Atoms are in close proximity to each other Outer, loosely-bound valence electron are not associated with any.
GaAs radiation imaging detectors with an active layer thickness up to 1 mm. D.L.Budnitsky, O.B.Koretskaya, V.A. Novikov, L.S.Okaevich A.I.Potapov, O.P.Tolbanov,
Paul Sellin, Radiation Imaging Group Charge Drift in partially-depleted epitaxial GaAs detectors P.J. Sellin, H. El-Abbassi, S. Rath Department of Physics.
Carrier Transport Phenomena
Electrical behavior Topic 3. Reading assignment Chung, Multifunctional cement- based Materials, Ch. 2. Askeland and Phule, The Science and Engineering.
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter IV June 14, 2015June 14, 2015June 14, 2015 P-n Junction.
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter I Introduction June 20, 2015June 20, 2015June 20, 2015.
Investigation of the properties of diamond radiation detectors
Wide Bandgap Semiconductor Detectors for Harsh Radiation Environments
EE415 VLSI Design The Devices: Diode [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
1 Semiconductor Detectors  It may be that when this class is taught 10 years on, we may only study semiconductor detectors  In general, silicon provides.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Chapter 1 : Diodes Gopika Sood Assistant Professor in Physics
Kristin Ackerson, Virginia Tech EE Spring The diode is the simplest and most fundamental nonlinear circuit element. Just like resistor, it has.
Radiation Hard Sensors for the Beam Calorimeter of the ILC C. Grah 1, R. Heller 1, H. Henschel 1, W. Lange 1, W. Lohmann 1, M. Ohlerich 1,3, R. Schmidt.
Taklimat UniMAP Universiti Malaysia Perlis WAFER FABRICATION Hasnizah Aris, 2008 Lecture 2 Semiconductor Basic.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
Introduction Trapped Plasma Avalanche Triggered Transit mode Prager
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
ENE 311 Lecture 9.
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
SILICON DETECTORS PART I Characteristics on semiconductors.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
14 December nd CARAT Workshop, GSI, Darmstadt1 Radiation hardness studies with relativistic electrons Sergej Schuwalow, Uni-HH / DESY On behalf of.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
Introduction to Semiconductors
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
EE105 - Spring 2007 Microelectronic Devices and Circuits
Solar Cell Semiconductor Physics
CHAPTER 4: P-N JUNCTION Part I.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Albuquerque 1 Wolfgang Lohmann DESY On behalf of the FCAL collaboration Forward Region Instrumentation.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
1/24 SiD FCAL Takashi Maruyama Tom Markiewicz SLAC TILC’09, Tskuba, Japan, April 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
CSE251 CSE251 Lecture 2 and 5. Carrier Transport 2 The net flow of electrons and holes generate currents. The flow of ”holes” within a solid–state material.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
Radiation hardness tests of GaAs and Si sensors at JINR S. M
Recall-Lecture 3 Atomic structure of Group IV materials particularly on Silicon Intrinsic carrier concentration, ni.
SOLIDS AND SEMICONDUCTOR DEVICES - II
Testbeam Results for GaAs and Radiation-hard Si Sensors
Semiconductor Detectors
Radiation hard sensors for ILC forward calorimeter
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
PN-JUNCTION.
Presentation transcript:

GaAs:Cr detector testing for FCAL calorimeter at planned linear accelerator ILC V. Elkin, U.Kruchonak XVI научная конференция молодых учёных и специалистов ОМУС 2012

The International Linear Collider ILC Parameters of the ILC: e + e - accelerator, sc cavities, gradient 31.5 MV/m => 30km long CMS energy: 200 to 500 GeV (possible upgrade to 1 TeV) One interaction region, beam crossing angle of 14mrad and two detectors („push-pull“ scenario) Peak luminosity: 2 x cm -2 s -1 typical beam size: (h x v) 650 nm x 5.7nm & beam intensity 2 x e + e - ~ 30 km

C.Grah: Radhard Sensors for BeamCal3 Very Forward Region of the ILC Detectors R&D of the detectors in the forward region is done by the FCAL Collaboration. Precise (LumiCal) and fast (BeamCal) luminosity measurement Hermeticity (electron detection at low polar angles) Mask for the inner detectors Not shown here: GamCal, a beamstrahlung photon detector at about 180m post-IP. LumiCal TPC ECAL HCAL BeamCal

C.Grah: Radhard Sensors for BeamCal4 The Beam Calorimeter - BeamCal Interaction point  Compact EM calorimeter with sandwich structure:  30 layers of 1 X 0 o3.5mm W absorber and 0.3mm radiation hard sensor  Angular coverage from 5mrad to 28 mrad (6.0 > |η| > 4.3)  Moliére radius R M ≈ 1cm  Segmentation between 0.5 and 0.8 x R M BeamCal LDC ~10cm ~12cm Space for electronics

The Challenges for BeamCal  e+e- pairs from beamstrahlung are deflected into the BeamCal e + e - per BX => 10 – 20 TeV total energy dep.  ~ 10 MGy per year strongly dependent on the beam and magnetic field configuration => radiation hard sensors  Detect the signature of single high energetic particles on top of the background. => high dynamic range/linearity e-e- e+e+ e-e- e-e- γ e-e- γ e+e+ e.g. Breit-Wheeler process

GaAs:Cr Sensor Plane  Produced by the Siberian Institute of Technology, Tomsk  semi-insulating GaAs doped by Sn (shallow donor)  compensated by Cr (deep acceptor): to compensate electron trapping centers EL2+ and provide i-type conductivity.

8 Advantages of Cr impurity as compared to the EL2 centers for detector material production Deep acceptor Deep donor - + small value of the electron capture cross section and absence of the field increase of the capture cross section on the electric field intensity absence of current oscillations possibility to reach uniform high electric field distribution through whole the detector with the thickness up to 1 mm

9 Electrophysical characteristics of high resistivity GaAs Material  о (10 -9 /  *cм) n o (10 5 cm –3 ) p o (10 5 cm –3 ) L n (cm) GaAs EL GaAs Cr – 0.2 The hole concentration in GaAs:Cr exceeds the concentration of electrons. The difference changes from 10 to 100 times depending on conditions of the diffusion process and the initial material characteristics.

11 sector size GaAs sensors Thickness μm Metallization -1 μm Ni 12 rings 64 pads from 18 to 42 mm 2 Surrounded by 120 μm width guard ring GaAs:Cr Sensor Plane

№Detectorthickness, um collected charge, e metallization, Type of metallization pixelsGuard ring 1AG-84 № Ni 2 AG 84 № Ni 3 AG 84 № Ni 4 AG 84 № Ni 5 AG 84 № Ni 6 AG 84 № Ni 7 AG 84 № Ni 8 AG 84 № Ni 9 AG 84 № Ni 10 AG 84 № Ni 11 AG 221 № Ni GaAs:Cr Sensor producer data

Circuit of capacitance measurement Bias Adapter BP Guard Ring L H Bias Ring LCR Meter

Typical C-V, measured between pad and backplane for different rates 100Hz -100 kHz Capacitance decrease with frequency Chosen frequency 10kHz

Pads capacitance distribution for 8 sensors

Pads capacitance distribution

A DC-PADs BP Guard Ring Circuit for I/V pad measurement Typical IV measurement for single pad is symmetric and linear in the range +/-500V

Temperature dependence of the resistance Measured from -10 C to 50 C The range from 65 GΩ*cm to 0.12 G Ω*cm

Measurement of the barrier height on border of metal−semiinsulating gallium arsenide total current through the device R eff - effective resistance of the entire device I n or I sat - Saturation current - Limiting current from metal to semiconductor [1] S - Cross-sectional area, A * n = 8.16 A*cm -2 *K -2 - Richardson constant for GaAs T - Temperature of device, q - electron charge, k - Boltzmann constant - barrier height on border of metal−semiinsulating gallium arsenide

I-V in range +/-10V Parameterization of the IV curve by 4 parameters: I saturation - I saturation + Resestivity- Resestivity+

Average resistivity and barrier height of AG84N19

Average resistivity and barrier height of 11 sensors №Detectorthickness, um Resistivity, Ohm*cmDarrier height, volts ρ+ρ+ ρ-ρ- φ+φ+ φ-φ- 1AG-84 №13498Not processed 2 AG 84 № E91.10E AG 84 № E92.18E AG 84 № E92.79E AG 84 № E92.37E AG 84 № E93.04E AG 84 № E93.48E AG 84 № E93.84E AG 84 № E93.23E AG 84 № E91.92E AG 221 № E92.42E

Unusual pads Some pads or guard rings have untypical behavior. For now we’ve found 6 sensors with guard ring and one pad: that may be related to metallization defects or internal structure injury. It appears on the crystal boundary in all cases.

Unusual pad, unusual guardring and normal pad C-V Growth up to 110pF at 100 V Similar behavior with guard ring Break through while measuring with guard ring Typical C < 12pF at 10kHz

Unusual pad I-V Growth up for positive Vbias Normal behavior in negative area Similar behavior with guard ring

Unusual pads NoNo Pad N o Breakdown voltage, V AsGa84N7Guard ring-330 AsGa84N7Ring12-Pad1-310 AsGa84N13Guard ring-160; +200 AsGa84N13Ring12-Pad6-280 AsGa84N21Guard ring+30 AsGa84N21Ring1-Pad4+50 AsGa84N26Guard ring-110; +230 AsGa84N26Ring12-Pad1-210 AsGa84N28Guard ring-300 AsGa84N28Ring12-Pad6+330 AsGa84N41Guard ring+110 AsGa84N41Ring12-Pad6+110

Thank you for attention!

Forward region of the ILC Beam calorimeter (BeamCal) - monitor the beam parameters at the interaction point; adjacent to the beampipe. Luminosity detector (LumiCal) – covers larger polar angles; luminometer of the detector. The gamma detector (GamCal) – together with BeamCal, measures beamstrahlung photons, which are very collinear to the beam.

Изучение характеристик детекторов на основе GaAs компенсированного хромом для будущего калориметра FCAL линейного ускорителя ILC V. Elkin, U.Kruchonak

Gallium arsenide (GaAs) Compound semiconductor, direct bandgap Two sublattices of face centered cubic lattice (zinc-blende type) GaAs grown by Liquid Encapsulated Czochralski (LEC). doped by Te or Sn (shallow donor) to fill EL2+ trapping centers. Compensated by Cr (deep acceptor) to high-ohmic intrinsic material. Compensation is temperature controlled Semi-insulating - no p-n junction Signal charge transport mainly by electrons Structure provided by metallisation (similar to diamond)  Density 5.32 g/cm3  Pair creation E 4.3 eV/pair  Band gap 1.42 eV  Electron mobility 8500 cm2/Vs  Hole mobility 400 cm2/Vs  Dielectric const  Radiation length 2.3 cm  Ave. Edep/100 μm69.7 keV (by 10 MeV e-)  Ave. pairs/100 μm  Structure p-n or insul  Density 5.32 g/cm3  Pair creation E 4.3 eV/pair  Band gap 1.42 eV  Electron mobility 8500 cm2/Vs  Hole mobility 400 cm2/Vs  Dielectric const  Radiation length 2.3 cm  Ave. Edep/100 μm69.7 keV (by 10 MeV e-)  Ave. pairs/100 μm  Structure p-n or insul