1 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA SMOS Salinity anomalies – Towards the correction of SMOS SSS systematic biases - J. Boutin 1, N. Martin 1,

Slides:



Advertisements
Similar presentations
1 © ACRI-ST, all rights reserved – 2012 Isotropic RFI detection Jean-Luc Vergely (ACRI-ST) Claire Henocq (ACRI-ST) Philippe Waldteufel (LATMOS)
Advertisements

SMOS L2 Ocean Salinity Commissioning Plan, 07/05/2009 Level 2 Ocean Salinity Processor Commissioning Plan 7 May 2009 ARGANS ACRI-ST ICM-CSIC.
PART 2: A QUICK COMPARISON OF V504 AND V620 GLOBAL MAPS Joe Tenerelli SMOS Calibration Meeting 18 26/05/2014.
SMOS – in situ comparisons J. Boutin*, N. Martin*, O. Hernandez*, N. Reul , G. Reverdin* *LOCEAN,  IFREMER.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
SMOS L1v620-L2v613 versus L1v505- L2v550 validation May 2011 Nicolas Martin, Jacqueline Boutin LOCEAN 26 May 2014.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L1 -> L2OS tools 12 February 2014 ARGANS & SMOS L2OS ESL.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity Using TEC estimated from Stokes 3 24 October 2012 ACRI-st, LOCEAN & ARGANS SMOS+polarimetry.
1 © ACRI-ST, all rights reserved – 2012 TEC estimation Jean-Luc Vergely (ACRI-ST) Jacqueline Boutin (LOCEAN)
Monitoring of Phytoplankton Functional Types in surface waters using ocean color imagery C. Moulin 1, S. Alvain 1,2, Y. Dandonneau 3, L. Bopp 1, H. Loisel.
Experiments with Monthly Satellite Ocean Color Fields in a NCEP Operational Ocean Forecast System PI: Eric Bayler, NESDIS/STAR Co-I: David Behringer, NWS/NCEP/EMC/GCWMB.
MIRAS performance based on OS data SMOS MIRAS IOP 6 th Review, ESAC – 17 June 2013 Prepared by: J. Font, SMOS Co-Lead Investigator, Ocean Salinity – ICM-CSIC.
1 Boutin et al., 2014 SMOS Salinity anomalies: new insights into SMOS capability at sensing SSS variability and into the improvements to be made in the.
Sea water dielectric constant, temperature and remote sensing of Sea Surface Salinity E. P. Dinnat 1,2, D. M. Le Vine 1, J. Boutin 3, X. Yin 3, 1 Cryospheric.
1.STSE 2.Objectives of today 3.Data availability 4.Reprocessing 5.RFI 6.Conferences & user meetings Introduction – SMOS mission status.
About L2OS v6 improvement wrt L2OS v5 N. Martin – J.L. Vergely - J. Boutin Descending orbits results In L2 v6 => latitudinal biases are reduced wrt L2.
Aquarius optimum interpolation analysis for global and regional studies O. Melnichenko, P. Hacker, N. Maximenko, G. Lagerloef, and J. Potemra 2014 Aquarius/SAC-D.
1 Improved Sea Surface Temperature (SST) Analyses for Climate NOAA’s National Climatic Data Center Asheville, NC Thomas M. Smith Richard W. Reynolds Kenneth.
1 NOAA’s National Climatic Data Center April 2005 Climate Observation Program Blended SST Analysis Changes and Implications for the Buoy Network 1.Plans.
1 Assessment of the CFSv2 real-time seasonal forecasts for Wanqiu Wang, Mingyue Chen, and Arun Kumar CPC/NCEP/NOAA.
Sustained Ocean Observations in Support of Sea Surface Salinity Process Studies Gustavo Jorge Goni National Oceanic and Atmospheric.
SMOS QWG-5, 30 May- 1 June 2011, ESRIN Ocean Salinity 1 1.Commissioning reprocessing analysis 2.New processor version: improvements and problems detected/solved.
Progress Meeting #27, April 2015, Barcelona SPAIN T3.2 Retrieval algorithm Estrella Olmedo BEC team SMOS Barcelona Expert Centre Pg. Marítim de la.
Salinity from space Past, present and yet to come Chris Banks Christine Gommenginger Meric Srokosz Helen Snaith Chris Banks Christine Gommenginger.
Objectives of the Workshop, Results of SMOS+ Surface Ocean Salinity (SOS) Ellis Ash (SatOC) Christine Gommenginger, Chris Banks, Eleni Tzortzi (NOC) Jacqueline.
SMOS SSS and wind speed J. Boutin, X. Yin, N. Martin -Optimization of roughness/foam model -Comparison of new-old ECMWF wind speeds -SSS anomaly in the.
Séverine Fournier, Nicolas Reul, Bertrand Chapron Laboratoire Océanographie Spatiale, IFREMER Joe Salisbury, Doug Vandemark University of New Hampshire,
Changes in the Seasonal Cycle of Sea Surface Salinity from Jim Reagan 1,2, Tim Boyer 2, John Antonov 2,3, Melissa Zweng 2 1 University of Maryland.
Satellite Sea-surface Salinity: Data and Product Biases and Differences Eric Bayler and Li Ren NOAA/NESDIS Center for Satellite Applications and Research.
Ocean Salinity validation of mission requirements review / improvements: Points of Reflexion ESL teams Mission Requirements: The so-called GODAE requirements:
Sea surface salinity from space: new tools for the ocean color community Joe Salisbury, Doug Vandemark, Chris Hunt, Janet Campbell, Dominic Wisser, Tim.
DMI-OI analysis in the Arctic DMI-OI processing scheme or Arctic Arctic bias correction method Arctic L4 Reanalysis Biases (AATSR – Pathfinder) Validation.
EXTENDING THE LAND SEA CONTAMINATION CHARACTERIZATION TO THE EXTENDED ALIAS- FREE FIELD OF VIEW Joe Tenerelli (CLS) and Nicolas Reul (IFREMER) SMOS Quality.
Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris,
SMOS-BEC – Barcelona (Spain) Revealing Geophysically-Consistent Spatial Structures in SMOS Surface Salinity Derived Maps Marcos Portabella, Estrella Olmedo,
GP33A-06 / Fall AGU Meeting, San Francisco, December 2004 Magnetic signals generated by the ocean circulation and their variability. Manoj,
QWG-12 Ocean studies (v5 reprocessed SSS) -South Pacific Maximum Salinity -North Atlantic Maximum Salinity (SPURS) -Variability of SSS: effects of rain/roughness/interpolation.
Sea Surface Salinity as Measured by SMOS and by Surface Autonomous Drifters: Impact of Rain J. Boutin, N. Martin, X. Yin, G. Reverdin, S. Morrisset LOCEAN,
Sea Surface Salinity under rain cells: SMOS satellite and in-situ drifters observations J. Boutin 1, N. Martin 1, G. Reverdin 1,S. Morisset 1, X. Yin 1,
USING SMOS POLARIMETRIC BRIGHTNESS TEMPERATURES TO CORRECT FOR ROUGH SURFACE EMISSION BEFORE SALINITY INVERSION.
SMOS-BEC – Barcelona (Spain) LO calibration frequency impact Part II C. Gabarró, J. Martínez, V. González, A. Turiel & BEC team SMOS Barcelona Expert Centre.
QWG-10 ESRIN 4-6 February 2013 Quality control study for SMOS data / Flags analysis C. Gabarró, J. Martínez, E. Olmedo M. Portabella, J. Font and BEC team.
QWG8, Boutin et al. SMOS and Aquarius: SSS and Wind Effect J. Boutin, X. Yin, N. Martin (LOCEAN, Paris), E. Dinnat (Chapman University/NASA/GSFC), S. Yueh.
Estimating SMOS error structure using triple collocation Delphine Leroux, CESBIO, France Yann Kerr, CESBIO, France Philippe Richaume, CESBIO, France 1.
SMOS Quality Working Group Meeting #2 Frascati (Rome), September 13 th -14 th,2010 SMOS-BEC Team.
SMOS QWG-9, ESRIN October 2012 L2OS: Product performance summary v550 highlights 1 The SMOS L2 OS Team.
New model used existing formulation for foam coverage and foam emissivity; tested over 3 half orbits in the Pacific foam coverage exponent modified to.
1 Development of a Regional Coupled Ocean-Atmosphere Model Hyodae Seo, Arthur J. Miller, John O. Roads, and Masao Kanamitsu Scripps Institution of Oceanography.
Sea Surface Salinity under rain cells: SMOS satellite and in-situ drifters observations J. Boutin 1, N. Martin 1, G. Reverdin 1,S. Morisset 1, X. Yin 1,
Ocean (surface) salinity an in situ perspective G. Reverdin LOCEAN, UMR CNRS/UPMC/IRD, Paris, France (indebted to numerous colleagues in France, US, Spain…)
Observations of Ocean response to Hurricane Igor: A Salty Tropical Cyclone Wake observed from Space Nicolas Reul 1, Joseph Tenerelli 2 1 IFREMER, Laboratoire.
A high-resolution Aquarius OI SSS L4 analysis: 3-year, near-global, weekly, 0.5 degree grid Oleg Melnichenko, Peter Hacker, Nikolai Maximenko, and James.
Indian Ocean modeling: successes, problems and prospects IO Modeling Workshop November 29 – December 3, 2004.
Assimilating Satellite Sea-Surface Salinity in NOAA Eric Bayler, NESDIS/STAR Dave Behringer, NWS/NCEP/EMC Avichal Mehra, NWS/NCEP/EMC Sudhir Nadiga, IMSG.
21-23/04/2015PM27 J-L Vergely, J. Boutin, N. Kolodziejczyk, N. Martin, S. Marchand SMOS RFI/Outlier filtering.
QWG-10 – 4-6 February 2013 – ESRIN (Italy) SMOS Level3 and Level 4 Research Products Provided by the Barcelona Expert Center Jordi Font and BEC team SMOS.
Contact © European Union, Monitoring the State of the Global Terrestrial Surfaces The state of vegetation is analysed using.
Ocean Data Assimilation for SI Prediction at NCEP David Behringer, NCEP/EMC Diane Stokes, NCEP/EMC Sudhir Nadiga, NCEP/EMC Wanqiu Wang, NCEP/EMC US GODAE.
Errors on SMOS retrieved SSS and their dependency to a priori wind speed X. Yin 1, J. Boutin 1, J. Vergely 2, P. Spurgeon 3, and F. Gaillard 4 1. LOCEAN.
Dependence of SMOS/MIRAS brightness temperatures on wind speed: sea surface effect and latitudinal biases Xiaobin Yin, Jacqueline Boutin LOCEAN.
QWG10, Boutin & Hernandez Large scale SSS inter-annual variability in tropical Indian and Pacific Oceans J. Boutin 1, O. Hernandez 1, N. Martin 1, G. Reverdin.
Universitat Politècnica de Catalunya CORRECTION OF SPATIAL ERRORS IN SMOS BRIGHTNESS TEMPERATURE IMAGES L. Wu, I. Corbella, F. Torres, N. Duffo, M. Martín-Neira.
Tests on V500 Sun On versus Sun Off 1)Tbmeas. –Tbmodel in the FOV X. Yin, J. Boutin Inputs from R. Balague, P. Spurgeon, A. Chuprin, M. Martin-Neira and.
Ocean Salinity Science 2014, 26–28 November, Exeter (UK) J. Ballabrera, N. Hoareau, M. Portabella, E. Garcia-Ladona, A. Turiel SMOS Barcelona Expert Centre.
Validating SMAP SSS with in situ measurements
CO2 sources and sinks in China as seen from the global atmosphere
Aquarius SSS space/time biases with respect to Argo data
‘Aquarius’ Maps Ocean Salinity Fine-scale Structure
Y. Xue1, C. Wen1, X. Yang2 , D. Behringer1, A. Kumar1,
NOAA Objective Sea Surface Salinity Analysis P. Xie, Y. Xue, and A
Presentation transcript:

1 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA SMOS Salinity anomalies – Towards the correction of SMOS SSS systematic biases - J. Boutin 1, N. Martin 1, N. Kolodziejczyk 1, O. Hernandez 1, G. Reverdin 1, F. Gaillard 2 1 LOCEAN Paris, France 2 LPO/IFREMER, Brest, France

2 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Outline SSS variability at global scale: SMOS and in situ SSS optimal interpolation results Preliminary results of new SMOS SSS ESA v6

3 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA SMOS Salinity maps CATDS CEC LOCEAN: ESA level 2 SSS (reprocessing version 5) mapped at monthly & 0.25° spatial resolution ; Running average over 100x100km 2 July 2010-June 2014 Ascending + Descending passes available on demand on (CATDS CEC-LOCEAN product)

4 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Optimal Interpolations of in situ SSS Optimal interpolation of in situ S (ARGO, TAO...) – smoothing ~300km –~0.5° resolution at the equator monthly fields (Myocean product since 2013) Keep only pixels where PCTVAR<80% (100%=no information from in situ data) WOA 2013 climatology ISAS v6 (see description of In Situ Analysis System in Gaillard et al. 2009) Objectively analyzed climatology of in situ S – 1° resolution monthly averaged climatology

5 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA SMOS – ISAS SSS (07/10 to 06/14) current??? Land (<800km) RFIs

6 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Interannual anomalies Most of SMOS SSS biases are about systematic from one year to the other => build a SMOS monthly SSS climatology (07/ /2014) SMOS SSS anomalies wrt SMOS climatology => interannual variability of SMOS SSS Build ISAS SSS monthly climatology (07/ /2014) ISAS SSS anomalies wrt ISAS climatology => interannual variability of ISAS SSS

7 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Interannual anomalies (see Durand et al. Ocean Dynamics 2013 (tropical Indian Ocean and IOD); Hasson et al. JGR 2014 (La Niña in tropical Pacific Ocean)

8 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Further than 800km from the continents 100km-monthly SMOS SSS wrt ISAS SSS and SMOS wrt ISAS SSSanomalies 0.2

9 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Further than 1200km from the continents 100km-monthly SMOS SSS wrt ISAS SSS and SMOS wrt ISAS SSSanomalies 0.2 When monthly systematic biases are removed, RMSD (SMOS-ISAS) ~0.2 but ISAS is not the truth (it is smoothed over ~300km) and it is affected by ARGO undersampling...) – Doing similar exercise with ship SSS averaged over 0.25° in SPURS region, we found 0.15 (Hernandez et al. 2014)!

10 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Biais cotiers: non visibles sur anomalies SSS => biais systematiques => correction? Kolodziejczyk (LOCEAN), Vergely (ACRI-st), Martin (LOCEAN), Marchand (LOCEAN), Boutin (LOCEAN) SMOS (Asc) – ISAS SSS – 4 year mean – All dwells

11 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Le biais en Tb dépend de la position dans le FOV => biais SSS dépend de la positions across track ~100km à gauche du centre ~100km à droite du centre

12 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA Correction simple: on ote un Biais moyen (3ans) /ISAS