1 Boutin et al., 2014 SMOS Salinity anomalies: new insights into SMOS capability at sensing SSS variability and into the improvements to be made in the.

Slides:



Advertisements
Similar presentations
PART 2: A QUICK COMPARISON OF V504 AND V620 GLOBAL MAPS Joe Tenerelli SMOS Calibration Meeting 18 26/05/2014.
Advertisements

SMOS – in situ comparisons J. Boutin*, N. Martin*, O. Hernandez*, N. Reul , G. Reverdin* *LOCEAN,  IFREMER.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
SMOS L1v620-L2v613 versus L1v505- L2v550 validation May 2011 Nicolas Martin, Jacqueline Boutin LOCEAN 26 May 2014.
SMOS L2 Ocean Salinity Level 2 Ocean Salinity L1 -> L2OS tools 12 February 2014 ARGANS & SMOS L2OS ESL.
Experiments with Monthly Satellite Ocean Color Fields in a NCEP Operational Ocean Forecast System PI: Eric Bayler, NESDIS/STAR Co-I: David Behringer, NWS/NCEP/EMC/GCWMB.
Discretizing the Sphere for Multi-Scale Air Quality Simulations using Variable-Resolution Finite-Volume Techniques Martin J. Otte U.S. EPA Robert Walko.
VARIABILITY OF OCEAN CO 2 PARTIAL PRESSURE AND AIR-SEA CO 2 FLUXES IN THE SUBANTARCTIC ZONE OF THE SOUTHERN OCEAN J. Boutin (1), L. Merlivat (1) and K.
1 Boutin et al., Avril 2015, SMOS-OCEAN TOSCA SMOS Salinity anomalies – Towards the correction of SMOS SSS systematic biases - J. Boutin 1, N. Martin 1,
Sea water dielectric constant, temperature and remote sensing of Sea Surface Salinity E. P. Dinnat 1,2, D. M. Le Vine 1, J. Boutin 3, X. Yin 3, 1 Cryospheric.
1.STSE 2.Objectives of today 3.Data availability 4.Reprocessing 5.RFI 6.Conferences & user meetings Introduction – SMOS mission status.
About L2OS v6 improvement wrt L2OS v5 N. Martin – J.L. Vergely - J. Boutin Descending orbits results In L2 v6 => latitudinal biases are reduced wrt L2.
Interannual Caribbean salinity in satellite data and model simulations Semyon Grodsky 1, Benjamin Johnson 1, James Carton 1, Frank Bryan 2 1 Department.
Aquarius optimum interpolation analysis for global and regional studies O. Melnichenko, P. Hacker, N. Maximenko, G. Lagerloef, and J. Potemra 2014 Aquarius/SAC-D.
1 Improved Sea Surface Temperature (SST) Analyses for Climate NOAA’s National Climatic Data Center Asheville, NC Thomas M. Smith Richard W. Reynolds Kenneth.
1 NOAA’s National Climatic Data Center April 2005 Climate Observation Program Blended SST Analysis Changes and Implications for the Buoy Network 1.Plans.
1 Assessment of the CFSv2 real-time seasonal forecasts for Wanqiu Wang, Mingyue Chen, and Arun Kumar CPC/NCEP/NOAA.
SEASONAL PREDICTIONS AND MONITORING FOR SAHEL REGION
Observations of Ocean response to Hurricane Igor: A Salty Tropical Cyclone Wake observed from Space N.Reul 1, Y, Quilfen 1, B. Chapron 1, E. Vincent 2,
1 Satellite & In Situ Salinity (SISS) Working Group: Current status and future plans Co-Chairs: J. Boutin (LOCEAN/CNRS), Yi Chao (RSSI) Web page: siss.locean-ipsl.upmc.fr.
Don P. Chambers Center for Space Research The University of Texas at Austin Understanding Sea-Level Rise and Variability 6-9 June, 2006 Paris, France The.
SMOS QWG-5, 30 May- 1 June 2011, ESRIN Ocean Salinity 1 1.Commissioning reprocessing analysis 2.New processor version: improvements and problems detected/solved.
Salinity from space Past, present and yet to come Chris Banks Christine Gommenginger Meric Srokosz Helen Snaith Chris Banks Christine Gommenginger.
Objectives of the Workshop, Results of SMOS+ Surface Ocean Salinity (SOS) Ellis Ash (SatOC) Christine Gommenginger, Chris Banks, Eleni Tzortzi (NOC) Jacqueline.
SMOS SSS and wind speed J. Boutin, X. Yin, N. Martin -Optimization of roughness/foam model -Comparison of new-old ECMWF wind speeds -SSS anomaly in the.
Séverine Fournier, Nicolas Reul, Bertrand Chapron Laboratoire Océanographie Spatiale, IFREMER Joe Salisbury, Doug Vandemark University of New Hampshire,
Changes in the Seasonal Cycle of Sea Surface Salinity from Jim Reagan 1,2, Tim Boyer 2, John Antonov 2,3, Melissa Zweng 2 1 University of Maryland.
Satellite Sea-surface Salinity: Data and Product Biases and Differences Eric Bayler and Li Ren NOAA/NESDIS Center for Satellite Applications and Research.
Ocean Salinity validation of mission requirements review / improvements: Points of Reflexion ESL teams Mission Requirements: The so-called GODAE requirements:
Sea surface salinity from space: new tools for the ocean color community Joe Salisbury, Doug Vandemark, Chris Hunt, Janet Campbell, Dominic Wisser, Tim.
DMI-OI analysis in the Arctic DMI-OI processing scheme or Arctic Arctic bias correction method Arctic L4 Reanalysis Biases (AATSR – Pathfinder) Validation.
EXTENDING THE LAND SEA CONTAMINATION CHARACTERIZATION TO THE EXTENDED ALIAS- FREE FIELD OF VIEW Joe Tenerelli (CLS) and Nicolas Reul (IFREMER) SMOS Quality.
Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris,
What is the key science driver for using Ocean Colour Radiometry (OCR) for research and applications? What is OCR, and what does it provide? Examples of.
GP33A-06 / Fall AGU Meeting, San Francisco, December 2004 Magnetic signals generated by the ocean circulation and their variability. Manoj,
2nd GODAE Observing System Evaluation Workshop - June Ocean state estimates from the observations Contributions and complementarities of Argo,
QWG-12 Ocean studies (v5 reprocessed SSS) -South Pacific Maximum Salinity -North Atlantic Maximum Salinity (SPURS) -Variability of SSS: effects of rain/roughness/interpolation.
Sea Surface Salinity as Measured by SMOS and by Surface Autonomous Drifters: Impact of Rain J. Boutin, N. Martin, X. Yin, G. Reverdin, S. Morrisset LOCEAN,
Sea Surface Salinity under rain cells: SMOS satellite and in-situ drifters observations J. Boutin 1, N. Martin 1, G. Reverdin 1,S. Morisset 1, X. Yin 1,
USING SMOS POLARIMETRIC BRIGHTNESS TEMPERATURES TO CORRECT FOR ROUGH SURFACE EMISSION BEFORE SALINITY INVERSION.
QWG-10 ESRIN 4-6 February 2013 Quality control study for SMOS data / Flags analysis C. Gabarró, J. Martínez, E. Olmedo M. Portabella, J. Font and BEC team.
QWG8, Boutin et al. SMOS and Aquarius: SSS and Wind Effect J. Boutin, X. Yin, N. Martin (LOCEAN, Paris), E. Dinnat (Chapman University/NASA/GSFC), S. Yueh.
SMOS Quality Working Group Meeting #2 Frascati (Rome), September 13 th -14 th,2010 SMOS-BEC Team.
SMOS QWG-9, ESRIN October 2012 L2OS: Product performance summary v550 highlights 1 The SMOS L2 OS Team.
Sea Surface Salinity under rain cells: SMOS satellite and in-situ drifters observations J. Boutin 1, N. Martin 1, G. Reverdin 1,S. Morisset 1, X. Yin 1,
Ocean (surface) salinity an in situ perspective G. Reverdin LOCEAN, UMR CNRS/UPMC/IRD, Paris, France (indebted to numerous colleagues in France, US, Spain…)
Observations of Ocean response to Hurricane Igor: A Salty Tropical Cyclone Wake observed from Space Nicolas Reul 1, Joseph Tenerelli 2 1 IFREMER, Laboratoire.
A high-resolution Aquarius OI SSS L4 analysis: 3-year, near-global, weekly, 0.5 degree grid Oleg Melnichenko, Peter Hacker, Nikolai Maximenko, and James.
Indian Ocean modeling: successes, problems and prospects IO Modeling Workshop November 29 – December 3, 2004.
Assimilating Satellite Sea-Surface Salinity in NOAA Eric Bayler, NESDIS/STAR Dave Behringer, NWS/NCEP/EMC Avichal Mehra, NWS/NCEP/EMC Sudhir Nadiga, IMSG.
21-23/04/2015PM27 J-L Vergely, J. Boutin, N. Kolodziejczyk, N. Martin, S. Marchand SMOS RFI/Outlier filtering.
Meeting Dates Location Title Author. 2 of 12 Dates Meeting Info Presentation info NASA Aquarius Mission Timeline May SPURS-2 Workshop EOPM OSST Seattle.
QWG-10 – 4-6 February 2013 – ESRIN (Italy) SMOS Level3 and Level 4 Research Products Provided by the Barcelona Expert Center Jordi Font and BEC team SMOS.
Ocean Data Assimilation for SI Prediction at NCEP David Behringer, NCEP/EMC Diane Stokes, NCEP/EMC Sudhir Nadiga, NCEP/EMC Wanqiu Wang, NCEP/EMC US GODAE.
Errors on SMOS retrieved SSS and their dependency to a priori wind speed X. Yin 1, J. Boutin 1, J. Vergely 2, P. Spurgeon 3, and F. Gaillard 4 1. LOCEAN.
Dependence of SMOS/MIRAS brightness temperatures on wind speed: sea surface effect and latitudinal biases Xiaobin Yin, Jacqueline Boutin LOCEAN.
QWG10, Boutin & Hernandez Large scale SSS inter-annual variability in tropical Indian and Pacific Oceans J. Boutin 1, O. Hernandez 1, N. Martin 1, G. Reverdin.
Tests on V500 Sun On versus Sun Off 1)Tbmeas. –Tbmodel in the FOV X. Yin, J. Boutin Inputs from R. Balague, P. Spurgeon, A. Chuprin, M. Martin-Neira and.
Cooperative Research Programs (CoRP) Satellite Climate Studies Branch (SCSB) 1 1 Reconstruction of Near-Global Precipitation Variations Based on Gauges.
Ocean Salinity Science 2014, 26–28 November, Exeter (UK) J. Ballabrera, N. Hoareau, M. Portabella, E. Garcia-Ladona, A. Turiel SMOS Barcelona Expert Centre.
Validating SMAP SSS with in situ measurements
Satellite & In Situ Salinity (SISS) Working Group:
Aquarius SSS space/time biases with respect to Argo data
‘Aquarius’ Maps Ocean Salinity Fine-scale Structure
Y. Xue1, C. Wen1, X. Yang2 , D. Behringer1, A. Kumar1,
Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations S. A. Grodsky1 N. Reul2, G. Lagerloef3, G. Reverdin4, J. A. Carton1,
Nicolas Reul1, Joseph Tenerelli2
NOAA Objective Sea Surface Salinity Analysis P. Xie, Y. Xue, and A
Thomas Smith1 Phillip A. Arkin2 George J. Huffman3 John J. Bates1
Fig. 3 Global and basin-averaged sampling error compared with reconstructed temperature change. Global and basin-averaged sampling error compared with.
Presentation transcript:

1 Boutin et al., 2014 SMOS Salinity anomalies: new insights into SMOS capability at sensing SSS variability and into the improvements to be made in the next years... J. Boutin 1, N. Martin 1, N. Kolodziejczyk 1, O. Hernandez 1, G. Reverdin 1, F. Gaillard 2 1 LOCEAN Paris, France 2 LPO/IFREMER, Brest, France

2 Boutin et al., ‘OTT’ Bias corrected region Hasson et al N RMSDifference (SMOS SSS (1 MONTH or 10 days-100x100KM 2 ) –IN SITU SSS COMPARISON OF SMOS WITH IN SITU SSS 0.33 Islands + RFI? Hasson et al Gulf stream – 10days Reul et al. GRL <0.2 1 month-200km Durand et al 2013 SPURS - Hernandez et al After correcting Large scale seasonal Biases Amazon Plume 10days - Reul et al Rain Boutin et al 2013

3 Boutin et al., 2014 SMOS Salinity maps CATDS CEC LOCEAN: ESA level 2 SSS (reprocessing version 5) mapped at monthly & 0.25° spatial resolution ; Running average over 100x100km 2 July 2010-June 2014 Ascending + Descending passes available on demand on (CATDS CEC-LOCEAN product)

4 Boutin et al., 2014 Optimal Interpolations of in situ SSS Optimal interpolation of in situ S (ARGO, TAO...) – smoothing ~300km –~0.5° resolution at the equator monthly fields (Myocean product since 2013) Keep only pixels where PCTVAR<80% (100%=no information from in situ data) WOA 2013 climatology ISAS v6 (see description of In Situ Analysis System in Gaillard et al. 2009) Objectively analyzed climatology of in situ S – 1° resolution monthly averaged climatology

5 Boutin et al., 2014 SMOS v5 – ISAS SSS (07/10 to 06/14) current??? Land (<800km) RFIs

6 Boutin et al., 2014 Interannual anomalies Most of SMOS SSS biases are about systematic from one year to the other => build a SMOS monthly SSS climatology (07/ /2014) SMOS SSS anomalies wrt SMOS 4yr climatology => interannual variability of SMOS SSS Build ISAS SSS monthly climatology (07/ /2014) ISAS SSS anomalies wrt ISAS climatology => interannual variability of ISAS SSS

7 Boutin et al., 2014 Interannual anomalies (see Durand et al. Ocean Dynamics 2013 (tropical Indian Ocean and IOD); Hasson et al. JGR 2014 (La Niña in tropical Pacific Ocean)

8 Boutin et al., 2014 Further than 800km from the continents 100km-monthly SMOS SSS wrt ISAS SSS and SMOS wrt ISAS SSSanomalies 0.2

9 Boutin et al., 2014 Further than 1200km from the continents 100km-monthly SMOS SSS wrt ISAS SSS and SMOS wrt ISAS SSSanomalies 0.2 When monthly systematic biases are removed, RMSD (SMOS-ISAS) ~0.2 but ISAS is not the truth (it does not sample mesoscale (it is smoothed over ~300km) and it is affected by ARGO undersampling...) – Doing similar exercise with ship SSS averaged over 0.25° in SPURS region, we found 0.15 (Hernandez et al. 2014)!

10 Boutin et al., 2014 Monthly climatologies differences: ISAS ( )– WOA 2013 ( ) Rmsd: 45S-45N: S-30N: ° resolution Climatologies built from in situ measurements with different optimal interpolation methods are quite different, RMSD (ISAS-WOA) ~0.2, similar order of magnitude as RMSD (SMOS-ISAS) when systematic biases are removed....

11 Boutin et al., 2014 Annual climatologies differences 0.25° resolution WOA-ISAS SMOS-ISAS

12 Boutin et al., 2014 Summary & perspectives SMOS SSS version 5 experiences large systematic biases (latitudinal/seasonal, vicinity of continents, RFIs) ; when considering 4-year anomalies, RMSE(SMOS_SSSa-ISAS_SSSa) ~0.2: this RMSD represents SMOS SSS uncertainties + ISAS SSS uncertainties When doing similar exercise using TSG SSS 0.25° in the subtropical Atlantic, RMSE (SMOS_SSS-ship_SSS)~0.15 => New satellite SSS provide a spatial bi- dimensional information about SSS variability at scales ~100km not accessible by other in situ network SMOS SSS version 6 will have less latitudinal biases and RFIs pollution will be better sorted out but biases in the vicinity ( RMSD SSS (SMOS-ISAS) will remain high due to continent pollution but what about RMSD SSSanomalies???? Next QWGs!