Combining Predictors and Predictands in CPT

Slides:



Advertisements
Similar presentations
Niamey, Niger, 1 st June 2007 La prevision saisonniere avec l’outil CPT By: Ousmane NDIAYE.
Advertisements

Climate Predictability Tool (CPT)
Recent S/I Prediction Activities at IRI. IRI Climate Predictability Tool (CPT) Simon Mason.
Statistical corrections of Central Southwest Asia winter precipitation simulations (and forecasts!) Michael K. Tippett, IRI Matt Barlow, AER Brad Lyon,
Clim.pact – a tool for empirical-statistical downscaling Monika Cahynová cas.cz Institute of Atmospheric Physics & Faculty of Science, Charles.
Early warning Systems in Sudan Meteorological Authority Ahmed M Abdel Karim Sudan Meteorological Authority Crop and RAngeland Monitoring.
The LEAP software January 21, 2008 Peter Hoefsloot consultant to WB and WFP.
WFM 6311: Climate Risk Management © Dr. Akm Saiful Islam WFM 6311: Climate Change Risk Management Akm Saiful Islam Lecture-4: Module- 3 Regional Climate.
Climate Variability and Prediction in the Little Colorado River Basin Matt Switanek 1 1 Department of Hydrology and Water Resources University of Arizona.
© Crown copyright Met Office Andrew Colman presentation to EuroBrisa Workshop July Met Office combined statistical and dynamical forecasts for.
Jonathan Edwards-Opperman.  Importance of climate-weather interface ◦ Seasonal forecasting  Agriculture  Water resource management.
1 Assessment of the CFSv2 real-time seasonal forecasts for Wanqiu Wang, Mingyue Chen, and Arun Kumar CPC/NCEP/NOAA.
Themes and Elements of Geography
Creating Empirical Models Constructing a Simple Correlation and Regression-based Forecast Model Christopher Oludhe, Department of Meteorology, University.
Seasonal Forecasting Simon Mason Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand, 12 – 16 January 2015.
Climate Predictability Tool (CPT) Ousmane Ndiaye and Simon J. Mason International Research Institute for Climate and Society The Earth.
Development of a downscaling prediction system Liqiang Sun International Research Institute for Climate and Society (IRI)
An Introduction to the IRI Data Library Michael Bell.
Multi-model operational seasonal forecasts for SADC Willem A. Landman Asmerom Beraki Cobus Olivier Francois Engelbrecht.
Intraseasonal TC prediction in the southern hemisphere Matthew Wheeler and John McBride Centre for Australia Weather and Climate Research A partnership.
The La Niña Influence on Central Alabama Rainfall Patterns.
CCA MADE EASY. The Science of Seasonal Climate Forecasting is all about connecting forcing and response. Once a forcing mechanism is identified the response.
DATA ANALYSIS PROJECT SIMONE PHILLIPS 24 APRIL 2014 EAS 4480.
Contacts: Werapol Bejranonda and Manfred Koch
Model validation Simon Mason Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand, 12 – 16 January 2015.
Mathematics of PCR and CCA Simon Mason Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand, 12 – 16 January.
Forecasting in CPT Simon Mason Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand, 12 – 16 January 2015.
SCALES IN PHYSICAL GEOGRAPHY
Climate Predictability Tool (CPT) Ousmane Ndiaye and Simon J. Mason International Research Institute for Climate and Society The Earth.
Can we distinguish wet years from dry years? Simon Mason Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand,
La Niña and The U. S. Winter Outlook Mike Halpert, Deputy Director Climate Prediction Center / NCEP December, 2011.
What exactly is GEOGRAPHY?. Geography is… A. Study of everything on Earth, from rocks and rainfall to people and places B. Study how the natural environment.
An Improved Global Snow Classification Dataset for Hydrologic Applications (Photo by Kenneth G. Libbrecht and Patricia Rasmussen) Glen E. Liston, CSU Matthew.
Linear Regression Simon Mason Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand, 12 – 16 January 2015.
Application of a Hybrid Dynamical-Statistical Model for Week 3 and 4 Forecast of Atlantic/Pacific Tropical Storm and Hurricane Activity Jae-Kyung E. Schemm.
Exploring the Possibility of Using Tropical Cyclone Numbers to Project Taiwan Summer Precipitation Patterns Mong-Ming Lu and Ru-Jun May Research and Development.
Status / Progress Report for GPC Tokyo Takayuki Tokuhiro Climate Prediction Division, JMA
CariCOF Climate Outlook March-April-May and June-July-August 2015 Coordination – CIMH – Dr. Cédric J. Van Meerbeeck Participating territories Antigua &
Predictability of Monthly Mean Temperature and Precipitation: Role of Initial Conditions Mingyue Chen, Wanqiu Wang, and Arun Kumar Climate Prediction Center/NCEP/NOAA.
CariCOF Climate Outlook February-March-April and May-June-July 2015 Coordination – CIMH – Dr. Cédric J. Van Meerbeeck Participating territories Antigua.
CariCOF Probabilistic Rainfall Outlook February-March-April 2015 and May-June-July 2015 CIMH Coordination – Dr. Cédric J. Van Meerbeeck NMHS’s acknowledged.
CariCOF Climate Outlook December 2014/January-February 2015 and March-April-May 2015 Coordination – CIMH – Dr. Cédric J. Van Meerbeeck Participating territories.
Arif Mahmood Chief Meteorologist Pakistan Meteorological Department Monsoon Rainfall Prediction Over Pakistan First session of.
LONG RANGE FORECAST SW MONSOON
Coordination – CIMH – Dr. Cédric J. Van Meerbeeck
Using teleconnections from the Pacific and Indian oceans for short-
An Introduction to the Climate Change Explorer Tool: Locally Downscaled GCM Data for Thailand and Vietnam Greater Mekong Sub-region – Core Environment.
Coordination – Dr. Cédric J. Van Meerbeeck
Challenges of Seasonal Forecasting: El Niño, La Niña, and La Nada
LONG RANGE FORECAST SW MONSOON
Coordination – Dr. Cédric J. Van Meerbeeck
LONG RANGE FORECAST SW MONSOON
Coordination – Dr. Cédric J. Van Meerbeeck
With special thanks to Prof. V. Moron (U
Scale: Kilometers.
Seasonal Prediction Activities at the South African Weather Service
Predictability of Indian monsoon rainfall variability
TOOLS OF THE GEOGRAPHER
Fig. 1 The temporal correlation coefficient (TCC) skill for one-month lead DJF prediction of 2m air temperature obtained from 13 coupled models and.
Predictors Observed rainfall up to May.
ONIX for Serials: how it can map to the MARC 21 Holdings Format
Seasonal Forecasting Using the Climate Predictability Tool
Scale: Kilometers.
Can we distinguish wet years from dry years?
Seasonal Forecasting Using the Climate Predictability Tool
TOOLS OF THE GEOGRAPHER
Forecast system development activities
Test Review Social Studies Africa.
Seasonal Forecasting Using the Climate Predictability Tool
Seasonal Forecasting Using the Climate Predictability Tool
Presentation transcript:

Combining Predictors and Predictands in CPT Simon Mason simon@iri.columbia.edu Seasonal Forecasting Using the Climate Predictability Tool Bangkok, Thailand, 12 – 16 January 2015

CPT Formats Predictors and / or predictands can be combined in version CPT 10+, but the new CPT formats must be used. CPT can read three different types of data: Index data : indices have no single specific geographical location, e.g. the SOI; Station data : stations have specific geographical locations, but are not typically distributed in a regular pattern Gridded data : the latitudes and longitudes do not have to be evenly spaced; the grid points can be representative of area-averages or be point specific.

Index Data xmlns:cpt=http://iri.columbia.edu/CPT/v10/ cpt:field=ENSO, cpt:nrow=9, cpt:ncol=4, cpt:col=index, cpt:row=T NINO12 NINO3 NINO3.4 NINO4 1991-01 -7.04E-02 0.2694498 0.5850401 0.9240733 1992-01 0.9675602 1.567671 1.78421 0.9166834 1993-01 0.2538059 0.142204 0.3976894 0.8017575 1995-01 1.319356 0.9692747 1.051067 1.088881 1996-01 -0.169409 -0.5436825 -0.7101253 -0.1563722 1997-01 -0.2674479 -0.6353493 -0.325502 0.3376727 1998-01 3.716633 3.442826 2.581284 1.036142 1999-01 -0.3437423 -0.8765103 -1.365756 -1.278136 2000-01 -0.4427198 -1.439994 -1.668904 -0.9916633 The cpt:col=index, and cpt:row=T tags identify the dataset as an index file. Data can be missed out completely (e.g., 1994 in the example), although doing so is not recommended. It would be better to use include the missing year, and then provide missing values, identified by the cpt:missing=n tag. The number of rows should indicate the number of rows available (in this case 9), rather than the number of years spanned by the data (10).

Index Data xmlns:cpt=http://iri.columbia.edu/CPT/v10/ …, cpt:nrow=10, cpt:ncol=4, cpt:missing=-999 NINO12 NINO3 NINO3.4 NINO4 1991-01 -7.04E-02 0.2694498 0.5850401 0.9240733 1992-01 0.9675602 1.567671 1.78421 0.9166834 1993-01 0.2538059 0.142204 0.3976894 0.8017575 1994-01 -999 -999 -999 -999 1995-01 1.319356 0.9692747 1.051067 1.088881 1996-01 -0.169409 -0.5436825 -0.7101253 -0.1563722 1997-01 -0.2674479 -0.6353493 -0.325502 0.3376727 1998-01 3.716633 3.442826 2.581284 1.036142 1999-01 -0.3437423 -0.8765103 -1.365756 -1.278136 2000-01 -0.4427198 -1.439994 -1.668904 -0.9916633 With the missing included cpt:nrow should now be 10.

Date Formats YYYY 2012 YYYY-MM 2012-05 YYYY-MM-DD 2012-05-10 YYYY-MM-DDTHH:MM 2012-05-10T09:00 Start-date/End-date YYYY/YYYY 2011/2020 YYYY-MM/YYYY-MM 2011-08/2012-07 YYYY-MM/MM 2012-04/06 YYYY-MM-DD/DD 2012-05-06/12 YYYY-MM-DD/MM-DD 2012-04-30/05-12 YYYY-MM-DD/YYYY-MM-DD 2011-05-11/2012-05-10 The date formats follow the ISO 8601 standard, although not all the standard is currently implemented (e.g., the week format is not implemented).

Station Data xmlns:cpt=http://iri.columbia.edu/CPT/v10/ cpt:field=prcp, cpt:nrow=8, cpt:ncol=4, cpt:col=station, cpt:row=T Station_A Station_B Station_C Station_D cpt:X -75.80000 -75.50000 -75.60000 -76.00000 cpt:Y 39.40000 38.70000 38.20000 38.60000 1981-01/03 1.78333 2.09000 1.97667 2.00000 1982-01/03 3.34000 3.59667 3.60333 3.55333 1983-01/03 4.52667 4.05333 4.62000 3.58000 1984-01/03 3.89667 4.84000 5.36667 4.53000 1985-01/03 2.04667 2.68667 3.07000 2.66333 1986-01/03 3.16000 2.88667 2.45333 3.19333 1987-01/03 2.68000 3.91667 4.78333 3.77667 1988-01/03 2.92333 3.59000 3.72667 3.61000

Gridded Data xmlns:cpt=http://iri.columbia.edu/CPT/v10/ cpt:nfields=1 cpt:field=ssta, cpt:units=C, cpt:T=1979-01, cpt:nrow=3, cpt:ncol=4, cpt:row=Y, cpt:col=X, cpt:missing=-9999 -18.75 -16.25 -13.75 -11.25 -58.75 -2.40977 -1.40228 -1.01278 -1.03197 -61.25 -3.65581 -3.18779 -2.28418 -1.45435 -63.75 -3.54459 -3.04635 -2.07969 -1.32451 cpt:T=1980-01 -58.75 -2.22299 -0.68736 0.27909 -0.42638 -61.25 -1.13313 -0.56869 -1.02204 -1.09111 -63.75 -1.40550 -1.10838 -0.37565 0.88614

Gridded Data xmlns:cpt=http://iri.columbia.edu/CPT/v10/ cpt:nfields=2 cpt:field=ssta, cpt:units=C, cpt:T=1979-01, cpt:nrow=3, cpt:ncol=4, cpt:row=Y, cpt:col=X, cpt:missing=-9999 -18.75 -16.25 -13.75 -11.25 -58.75 -2.40977 -1.40228 -1.01278 -1.03197 -61.25 -3.65581 -3.18779 -2.28418 -1.45435 -63.75 -3.54459 -3.04635 -2.07969 -1.32451 cpt:field=mslp, cpt:units=mb, cpt:T=1979-02, cpt:nrow=2, cpt:ncol=2, cpt:row=Y, cpt:col=X, cpt:missing=-10 -70.0 -65.0 15.0 1001.2 1000.6 20.0 1002.8 1003.2 The simplest way of setting up a multi-field file is to copy the second set of data beneath the first set (deleting the cpt header lines), and setting the cpt:nfields=n tag appropriately. Note that the fields do not have to be the same resolution, or even the same date. However, the first set of data for field-1 will be paired with the first set for fields-2, so if one set of data starts in a different year, make sure that you only include only the data for the matching periods in the combined file.

Exercises Using the ERSST3 data as predictors use data for November and December to make one model for predicting MAM rainfall for Thailand. Compare these models with the separate models for these two models. Try combining the ECHAM GCM predictors with the ERSST3 data for December. How does the forecast compare with that for the SSTs and the GCM output as predictors separately? Combine the ECHAM GCM data with CFS2 data. Using CCA, does there appear to be a preference for using either of the two models (hint – look at the CCA mode maps, and the climatology correlations)?