PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux Comparison of ocean color atmospheric correction approaches for operational remote sensing of turbid, coastal.

Slides:



Advertisements
Similar presentations
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Advertisements

MODIS Ocean Products MODIS/AIRS Workshop Pretoria, South Africa April 4-7, 2006 Liam Gumley Space Science and Engineering Center University of Wisconsin-Madison.
Satellite Ocean Color Overview Dave Siegel – UC Santa Barbara With help from Chuck McClain, Mike Behrenfeld, Bryan Franz, Jim Yoder, David Antoine, Gene.
Welcome to the Ocean Color Bio-optical Algorithm Mini Workshop Goals, Motivation, and Guidance Janet W. Campbell University of New Hampshire Durham, New.
Characterization of radiance uncertainties for SeaWiFS and Modis-Aqua Introduction The spectral remote sensing reflectance is arguably the most important.
Evaluation of atmospheric correction algorithms for MODIS Aqua in coastal regions Goyens, C., Jamet, C., and Loisel, H. Atmospheric correction workshop.
The GSM merging model. Previous achievements and application to GlobCOLOUR Globcolour / Medspiration user consultation, Dec 4-6, 2006, Villefranche/mer.
Uncertainty estimates in input (Rrs) and output ocean color data: a brief review Stéphane Maritorena – ERI/UCSB.
MODIS Land Bands for Ocean Remote Sensing: Application to Chesapeake Bay Bryan Franz NASA Ocean Biology Processing Group MODIS Science Team Meeting, October.
Menghua Wang NOAA/NESDIS/ORA E/RA3, Room 102, 5200 Auth Rd.
1 Calibration Adjustments for the MODIS Aqua 2015 Ocean Color Reprocessing Gerhard Meister, NASA Code 616 OBPG (Ocean Biology Processing Group) 5/18/2015.
UNH Coastal Observing Center NASA GEO-CAPE workshop August 19, 2008 Ocean Biological Properties Ru Morrison.
In situ science in support of satellite ocean color objectives Jeremy Werdell NASA Goddard Space Flight Center Science Systems & Applications, Inc. 6 Jun.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Satellite observations of ocean color NASA Ocean Biology Processing Group Goddard Space Flight.
A Comparison of Particulate Organic Carbon (POC) from In situ and Satellite Ocean Color Data Off the Coast of Antarctica Amanda Hyde Antonio Mannino (advisor)
Ocean Color Observations and Their Applications to Climate Studies Alex Gilerson, Soe Hlaing, Ioannis Ioannou, Sam Ahmed Optical Remote Sensing Laboratory,
The IOCCG Atmospheric Correction Working Group Status Report The Eighth IOCCG Committee Meeting Department of Animal Biology and Genetics University.
Using ocean observatories to support NASA satellite ocean color objectives Jeremy Werdell NASA Goddard Space Flight Center Ocean Observatories Workshop.
Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Marine inherent optical properties (IOPs) from MODIS Aqua & Terra Jeremy Werdell NASA.
Atmospheric Correction Algorithms for Remote Sensing of Open and Coastal Waters Zia Ahmad Ocean Biology Processing Group (OBPG) NASA- Goddard Space Flight.
IOCCG WG on Atmospheric correction over turbid waters C. Jamet Kick-off meeting Wimereux, France May, 14, 2014.
Chapter 7 Atmospheric correction and ocean color algorithm Remote Sensing of Ocean Color Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of Earth.
1 Evaluating & generalizing ocean color inversion models that retrieve marine IOPs Ocean Optics Summer Course University of Maine July 2011.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Menghua Wang, NOAA/NESDIS/ORA Atmospheric Correction using the MODIS SWIR Bands (1240 and 2130 nm) Menghua Wang (PI, NASA NNG05HL35I) NOAA/NESDIS/ORA Camp.
Retrieving Coastal Optical Properties from MERIS S. Ladner 1, P. Lyon 2, R. Arnone 2, R. Gould 2, T. Lawson 1, P. Martinolich 1 1) QinetiQ North America,
High Resolution MODIS Ocean Color Fred Patt 1, Bryan Franz 1, Gerhard Meister 2, P. Jeremy Werdell 3 NASA Ocean Biology Processing Group 1 Science Applications.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
Lachlan McKinna & Jeremy Werdell Ocean Ecology Laboratory NASA Goddard Space Flight Center MODIS Science Team Meeting Silver Spring, Maryland 21 May 2015.
Menghua Wang, NOAA/NESDIS/STAR Remote Sensing of Water Properties Using the SWIR- based Atmospheric Correction Algorithm Menghua Wang Wei Shi and SeungHyun.
Remote Sensing Reflectance and Derived Ocean Color Products from MODIS to VIIRS MODIS Science Team Meeting May 2015, Silver Spring, MD Bryan Franz.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Atmospheric Correction for Ocean Color Remote Sensing Geo 6011 Eric Kouba Oct 29, 2012.
MODIS/Aqua Ocean Reprocessing Bryan Franz Ocean Biology Processing Group MODIS Science Team Meeting March 2005.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Presented by Menghua Wang.
Goddard Space Flight Center Ocean Color Reprocessing Bryan Franz Ocean Biology Processing Group NASA Goddard Space Flight Center.
Optical Water Mass Classification for Interpretation of Coastal Carbon Flux Processes R.W. Gould, Jr. & R.A. Arnone Naval Research Laboratory, Code 7333,
Definition and assessment of a regional Mediterranean Sea ocean colour algorithm for surface chlorophyll Gianluca Volpe National Oceanography Centre, Southampton.
NASA Ocean Color Research Team Meeting, Silver Spring, Maryland 5-7 May 2014 II. Objectives Establish a high-quality long-term observational time series.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Menghua Wang, NOAA/NESDIS/ORA Refinement of MODIS Atmospheric Correction Algorithm Menghua Wang (PI, NASA NNG05HL35I) NOAA/NESDIS/ORA Camp Springs, MD.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
VIIRS Product Evaluation at the Ocean PEATE Frederick S. Patt Gene C. Feldman IGARSS 2010 July 27, 2010.
GlobColour / Medspiration user consultations, Nov 20-22, 2007, Oslo Validation of the GlobColour Full product set ( FPS ) over open ocean Case 1 waters.
SNPP Ocean SIPS status SNPP Applications Workshop 18 November 2014 Bryan Franz and the Ocean Biology Processing Group.
Validation of Coastwatch Ocean Color products S. Ramachandran, R. Sinha ( SP Systems NOAA/NESDIS) Kent Hughes and C. W. Brown ( NOAA/NESDIS/ORA,
Inter-comparison of atmospheric correction over moderately to very turbid waters Cédric Jamet Kick-off meeting Wimereux, France May, 14, 2014.
In situ data in support of (atmospheric) ocean color satellite calibration & validation activities How are my data used? Part 2 Ocean Optics Class University.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Satellite Observation and Model Simulation of Water Turbidity in the Chesapeake.
Estimating the uncertainties in the products of inversion algorithms or, how do we set the error bars for our inversion results? Emmanuel Boss, U. of Maine.
NRL 7333 Rb = 1-  1+  1+  2 Non- Linear b1- b2q3 influences We developed improved SeaWIFS coastal ocean color algorithms to derived inherent optical.
IOP algorithm OOXX Jeremy Werdell & Bryan Franz NASA Ocean Biology Processing Group 25 Sep 2010, Anchorage, AK
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Polarization analysis in MODIS Gerhard Meister, Ewa Kwiatkowska, Bryan Franz, Chuck McClain Ocean Biology Processing Group 18 June 2008 Polarization Technology.
MODIS-Terra cross-calibration for ocean color bands Ewa Kwiatkowska Bryan Franz, Gerhard Meister, Gene Eplee OBPG 30 January 2008.
CIOSS Ocean Optics Aug 2005 Ocean Optics, Cal/Val Plans, CDR Records for Ocean Color Ricardo M Letelier Oregon State University Outline - Defining Ocean.
Advances in the Processing and Retrieval of Ocean Color from MODIS and SeaWiFS MODIS Science Team Meeting January 2010 Bryan Franz and the Ocean Biology.
NASA OBPG Update OCRT Meeting 23 April 2012 Bryan Franz and the NASA Ocean Biology Processing Group.
High Resolution MODIS Ocean Color Bryan Franz NASA Ocean Biology Processing Group MODIS Science Team Meeting, 4-6 January 2006, Baltimore, MD.
Ocean Sciences The oceans cover 3/4 of the Earth’s surface. They provide the thermal memory for the global climate system, and are a major reservoir of.
IOCCG WG on Atmospheric correction over turbid waters C. Jamet IOCCG meeting Santa Monica, USA March, 1, 2015.
MODIS-Terra cross-calibration for ocean color bands Ewa Kwiatkowska Bryan Franz, Gerhard Meister Ocean Biology Processing Group 13 May 2008 MODIS Science.
The Dirty Truth of Coastal Ocean Color Remote Sensing Dave Siegel & St é phane Maritorena Institute for Computational Earth System Science University of.
Ocean color atmospheric correction – Using a bio-optical model to address the “black pixel assumption” Ocean Optics Class University of Maine July 2011.
D e v e l o p m e n t o f t h e M N I R-S W I R a n d AA a t m o s p h e r I c c o r r e c t I o n a n d s u s p e n d e d s e d I m e n t c.
Jian Wang, Ph.D IMCS Rutgers University
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Assessment of Satellite Ocean Color Products of the Coast of Martha’s Vineyard using AERONET-Ocean Color Measurements Hui Feng1, Heidi Sosik2 , and Tim.
Presentation transcript:

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux Comparison of ocean color atmospheric correction approaches for operational remote sensing of turbid, coastal waters Jeremy Werdell Bryan Franz NASA Goddard Space Flight Center 13 Jun 2012

outline remote sensing of turbid, coastal waters is difficult no one uses the “black pixel assumption” anymore most of the approaches to account for R rs (NIR) > 0 sr -1 overlap a bio-optical model for R rs (NIR) provides one viable approach comparing various approaches requires consistency PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

remote sensing of turbid, coastal waters is difficult temporal & spatial variability satellite sensor resolution satellite repeat frequency validity of ancillary data (SST, wind) resolution requirements & binning options straylight contamination (adjacency effects) non-maritime aerosols (dust, pollution) region-specific models required? absorbing aerosols suspended sediments & CDOM complicates estimation of R rs (NIR) complicates BRDF (f/Q) corrections saturation of observed radiances anthropogenic emissions (NO 2 absorption) Chesapeake Bay Program AERONET COVE

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux temporal & spatial variability satellite sensor resolution satellite repeat frequency validity of ancillary data (SST, wind) resolution requirements & binning options straylight contamination (adjacency effects) non-maritime aerosols (dust, pollution) region-specific models required? absorbing aerosols suspended sediments & CDOM complicates estimation of R rs (NIR) complicates BRDF (f/Q) corrections saturation of observed radiances anthropogenic emissions (NO 2 absorption) Chesapeake Bay Program AERONET COVE remote sensing of turbid, coastal waters is difficult

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux the experiment Chesapeake Bay provides our case study site run multiple long-term time-series of MODIS-Aqua Lower Chesapeake Bay, June December 2008 processing configuration follows Reprocessing 2010 QC metrics: exclude cloudy days & high sensor zenith angles final analyses use ~ 13 days per month generate frequency distributions and monthly time-series use in situ measurements as reference consider potential for application in an operational environment

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux need  a ( ) to get  w ( ) and vice-versa  t ( ) =  w ( ) +  g ( ) +  f ( ) +  r ( ) +  a ( ) atmospheric correction & the “black pixel” assumption TOA water glint foam air aerosols

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux need  a ( ) to get  w ( ) and vice-versa the “black pixel” assumption (pre-2000):  a (NIR) =  t (NIR) -  g (NIR) -  f (NIR) -  r (NIR) -  w (NIR)  t ( ) =  w ( ) +  g ( ) +  f ( ) +  r ( ) +  a ( ) atmospheric correction & the “black pixel” assumption TOA water glint foam air aerosols 0

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux need  a ( ) to get  w ( ) and vice-versa the “black pixel” assumption (pre-2000):  a (NIR) =  t (NIR) -  g (NIR) -  f (NIR) -  r (NIR) -  w (NIR) calculate aerosol ratios,  :  (748,869)  (,869)  t ( ) =  w ( ) +  g ( ) +  f ( ) +  r ( ) +  a ( ) atmospheric correction & the “black pixel” assumption  a (869)  a (748)  a (869)  a ( ) TOA water glint foam air aerosols ≈ ≈ 0  (748,869)

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux no one uses the “black pixel assumption” anymore

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux no one uses the “black pixel assumption” anymore

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux what happens if we don’t account for R rs (NIR) > 0? use the “black pixel” assumption (e.g., SeaWiFS )

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux many approaches exist, here are a few examples: assign aerosols (  ) and/or water contributions (Rrs(NIR)) e.g., Hu et al. 2000, Ruddick et al use shortwave infrared bands e.g., Wang & Shi 2007 correct/model the non-negligible R rs (NIR) Siegel et al. 2000used in SeaWiFS Reprocessing 3 (2000) Stumpf et al. 2003used in SeaWiFS Reprocessing 4 (2002) Lavender et al. 2005MERIS Bailey et al. 2010used in SeaWiFS Reprocessing 2010 Wang et al. 2012GOCI use a coupled ocean-atmosphere optimization e.g., Chomko & Gordon 2001, Stamnes et al. 2003, Kuchinke et al approaches to account for R rs (NIR) > 0 sr -1 overlap

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux fixed aerosol & water contributions (ex: MUMM) assign  &  w (NIR) (via fixed values, a climatology, nearby pixels)

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux advantages: accurate configuration leads to accurate aerosol & R rs (NIR) retrievals several configuration options: fixed values, climatologies, nearby pixels method available for all past, present, & future ocean color satellites disadvantages: no configuration is valid at all times for all water masses requires local knowledge of changing aerosol & water properties implementation can be complicated for operational processing advantages & disadvantages

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux use of NIR + SWIR bands use SWIR bands in “turbid” water, otherwise use NIR bands

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux use of SWIR bands only compare NIR & SWIR retrievals when considering only “turbid pixels”

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux advantages & disadvantages advantages: “black pixel” assumption largely satisfied in SWIR region of spectrum straightforward implementation for operational processing disadvantages: only available for instruments with SWIR bands SWIR bands on MODIS have inadequate signal-to-noise (SNR) ratios difficult to vicariously calibrate the SWIR bands on MODIS must define conditions for switching from NIR to SWIR

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux bio-optical model to estimate R rs (NIR) estimate R rs (NIR) using a bio-optical model operational SeaWiFS & MODIS processing ~ 2000-present

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux advantages & disadvantages advantages: method available for all past, present, & future ocean color missions straightforward implementation for operational processing disadvantages: bio-optical model not valid at all times for all water masses

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux summary of the three approaches defaults as implemented in SeaDAS

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux  a (NIR) =  t (NIR) -  g (NIR) -  f (NIR) -  r (NIR) -  w (NIR)  (748,869)  (,869)  t ( ) =  w ( ) +  g ( ) +  f ( ) +  r ( ) +  a ( )  a (869)  a (748)  a (869)  a ( ) TOA water glint foam air aerosols ≈ ≈ approaches to account for R rs (NIR) > 0 sr -1 overlap assign  and/or Rrs(NIR) Hu et al Ruddick et al assign  and/or Rrs(NIR) Hu et al Ruddick et al model Rrs(NIR) Siegel et al Stumpf et al Lavendar et al Bailey et al Wang et al model Rrs(NIR) Siegel et al Stumpf et al Lavendar et al Bailey et al Wang et al SWIR Wang et al SWIR Wang et al coupled ocean-atm Chomko & Gordon 2001 Stamnes et al Kuchinke et al coupled ocean-atm Chomko & Gordon 2001 Stamnes et al Kuchinke et al. 2009

initial R rs (670) measured by satellite (using R rs (765) = 0) bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

initial R rs (670) measured by satellite (using R rs (765) = 0) model a(670) = a w (670) + a pg (670) = 0.1 m -1 a w (670) = 0.44 m -1 bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

initial R rs (670) measured by satellite (using R rs (765) = 0) model a(670) = a w (670) + a pg (670) estimate b b (670) using R rs (670), a(670), & G(670) [Morel et al. 2002] bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

initial R rs (670) measured by satellite (using R rs (765) = 0) model a(670) = a w (670) + a pg (670) estimate b b (670) using R rs (670), a(670), & G(670) [Morel et al. 2002] model  using R rs (443) & R rs (555) [Lee et al. 2002] from Carder et al bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

initial R rs (670) measured by satellite (using R rs (765) = 0) model a(670) = a w (670) + a pg (670) estimate b b (670) using R rs (670), a(670), & G(670) [Morel et al. 2002] model  using R rs (443) & R rs (555) [Lee et al. 2002] estimate b b (765) using b b (670) &  bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

initial R rs (670) measured by satellite (using R rs (765) = 0) model a(670) = a w (670) + a pg (670) estimate b b (670) using R rs (670), a(670), & G(670) [Morel et al. 2002] model  using R rs (443) & R rs (555) [Lee et al. 2002] estimate b b (765) using b b (670) &  reconstruct R rs (765) using b b (765), a w (765), & G(765) a w (765) = 2.85 m -1 bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

initial R rs (670) measured by satellite (using R rs (765) = 0) model a(670) = a w (670) + a pg (670) estimate b b (670) using R rs (670), a(670), & G(670) [Morel et al. 2002] model  using R rs (443) & R rs (555) [Lee et al. 2002] estimate b b (765) using b b (670) &  reconstruct R rs (765) using b b (765), a w (765), & G(765) iterate until Rrs(765) changes by <2% (typically 3-4 iterations) bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

not applied when Chl < 0.3 mg m -3 weighted application when 0.3 < Chl < 0.7 mg m -3 fully applied when Chl > 0.7 mg m -3 black = land; grey = Chl 0.3 mg m -3 bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

approaches used previously by the NASA OBPG: Bailey et al. 2010, Optics Express 18, Stumpf et al. 2003, SeaWiFS Postlaunch Tech Memo Vol. 22, Chapter 9 Siegel et al. 2000, Applied Optics 39, others bio-optical model to estimate R rs (NIR) PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

comparison of approaches benefits from consolidation of software permits isolation of mechanisms & algorithms to evaluate limits interference by & biases of other factors (e.g., look up tables) for example Lavendar et al. 2005, Bailey et al. 2010, & Wang et al all present bio-optical models for estimating R rs (NIR) inclusion of all 3 into L2GEN permits isolated comparison of bio-optical model while controlling Rayleigh tables, aerosol tables, etc. uncertainties comparing approaches requires consistency PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

comparisons with MERIS CoastColour PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux SeaWiFS MODIS-Aqua MERIS in situ Middle Bay Rrs( )

comparisons with MERIS CoastColour PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux SeaWiFS MODIS-Aqua MERIS in situ Middle Bay derived products Chl, IOPs, Kd, TSM

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux

Turbid Water Atmospheric Correction:  w (NIR) ≠ 0 1) convert  w (670) to b b /(a+b b ) via Morel f/Q and retrieved Chl a 2) estimate a(670) = a w (670) + a pg (670) via NOMAD empirical relationship 3) estimate b b (NIR) = b b (670) ( /670) h via Lee ) assume a(NIR) = a w (NIR) 5) estimate  w (NIR) from b b /(a+b b ) via Morel f/Q and retrieved Chl a guess  w (670) = 0 guess  w (670) = 0 model  w (NIR) = func  w (670) model  w (NIR) = func  w (670) Correct  ' a (NIR) =  a (NIR) – t  w (NIR) Correct  ' a (NIR) =  a (NIR) – t  w (NIR) retrieve  i w (670) retrieve  i w (670) no done test |  w i+1 (670) -  i (670)| < 2%

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux SNR transect for MODIS-Aqua NIR & SWIR bands

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux Aqua Chl “match-ups” for NIR & SWIR processing

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux MODIS-Aqua  a (443)

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux distribution of the turbidity index using in NIR-SWIR

PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux MODIS-Aqua vs. SeaWiFS default processing ~ OC3 for MODIS-Aqua & OC4 for SeaWiFS

ocean color satellites view the top of the atmosphere this signal includes contributions from: Rayleigh (air molecules) surface reflection aerosols water model to remove the aerosol signal, we make some assumptions about the “blackness” of the water signal in near-infrared (NIR) bands 0 atmospheric correction & the “black pixel” assumption PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux