Andreas Lagg, MPS & IMaX and Sunrise team 2nd Sunrise Science Meeting, May 4-5 2010, Freiburg TexPoint fonts used in EMF. Read the TexPoint manual before.

Slides:



Advertisements
Similar presentations
Turbulent transport of magnetic fields Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical.
Advertisements

Free Magnetic Energy and Relative Helicity in Quiet Sun Regions and their role in Solar Dynamics Kostas Tziotziou IAASARS, National Observatory of Athens,
Lecture 2: Convolution and edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
2006/4/17-20 Extended 17 th SOT meeting Azimuth ambiguity resolution from dBz/dz M. Kubo (ISAS/JAXA), K. Shimada (University of Tokyo), K. Ichimoto, S.
SDO/HMI multi-height velocity measurements Kaori Nagashima (MPS) Collaborators: L. Gizon, A. Birch, B. Löptien, S. Danilovic, R. Cameron (MPS), S. Couvidat.
Evolutionary tracks of magnetic bright points as seen by IMaX/Sunrise Utz Dominik Work performed in the frame of FWF project: Spektroskopische und statistische.
Small-scale solar surface fields M. J. Martínez González Instituto de Astrofísica de Canarias.
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the photosphere we can observe flux.
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the photosphere we can observe flux.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
Andreas Lagg MPI for Solar System Research Katlenburg-Lindau, Germany
The Independency of Stellar Mass-Loss Rates on Stellar X-ray Luminosity and Activity Space Telescope Science Institute – 2012.
Chapter 13 Cont’d – Pressure Effects
Using HMI to Understand Flux Cancellation by Brian Welsch 1, George Fisher 1, Yan Li 1, and Xudong Sun 2 1 Space Sciences Lab, UC-Berkeley, 2 Stanford.
Physics 681: Solar Physics and Instrumentation – Lecture 16 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
1 Chromospheric UV oscillations depend on altitude and local magnetic field Noah S. Heller and E.J. Zita, The Evergreen State College, Olympia, WA
Stokes profiles Swedish 1m Solar Telescope, perfect seeing.
Modelling X-ray Bright Points on the Quiet Sun. Parameter fitting to a Coronal Heating solution. Matthew Chantry Mentor: Aad van Ballegooijen University.
Vector Spectropolarimetry of Dark-cored Penumbral Filaments with Hinode Bellot Rubio ApJL, 2007, in press.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Sung-Hong Park Space Weather Research Laboratory New Jersey Institute of Technology Study of Magnetic Helicity and Its Relationship with Solar Activities:
Physics 681: Solar Physics and Instrumentation – Lecture 24 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Twist & writhe of kink-unstable magnetic flux ropes I flux rope: helicity sum of twist and writhe: kink instability: twist  and writhe  (sum is constant)
Statistical properties of current helicity and twist distribution in the solar cycle by high resolution data from SOT/SP on board Hinode K. Otsuji 1),
UNNOFIT inversion V. Bommier, J. Rayrole, M. Martínez González, G. Molodij Paris-Meudon Observatory (France) THEMIS Atelier "Inversion et transfert multidimensionnel",
M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School.
A. Lagg - Abisko Winter School 1. A. Lagg - Abisko Winter School 2.
R. K. Ulrich 1 · L. Bertello 1 · J. E. Boyden 1 · L. Webster 1 Interpretation of Solar Magnetic Field Strength Observations 1 Department of Physics and.
Andreas Lagg. LineWL [Å]Landé- factor Δλ 2kG [mÅ] Δ to IMaX-line [mÅ] [km/s] FWHM [mÅ] Fe I Ca I
2005/11/086th Solar-B Science Supersonic downflows in the photosphere discovered in sunspot moat regions T. Shimizu (ISAS/JAXA, Japan),
Where is Coronal Plasma Heated? James A. Klimchuk NASA Goddard Space Flight Center, USA Stephen J. Bradshaw Rice University, USA Spiros Patsourakos University.
Signatures of Intermittent Turbulence in Hinode Quiet Sun Photosphere Valentina Abramenko, Big Bear Solar Observatory, USA, Plasma.
A. Lagg - Abisko Winter School 1. A. Lagg - Abisko Winter School 2 Why Hinode?  spectra are easier to interpret than, e.g. CRISP (continuous WL coverage)
19 Oct 2005SPW41 Penumbral MMFs S Jaeggli (UHawaii) C Henney (NSO) S Luszcz (Cornell) S Walton (CSUN/SFO)
Decay of a simulated bipolar field in the solar surface layers Alexander Vögler Robert H. Cameron Christoph U. Keller Manfred Schüssler Max-Planck-Institute.
CS176 Capstone Project TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AA In Deo Speramus Brown.
CASS/UCSD - Jeju 2015 A Jets in the Heliosphere: A Solar Wind Component B.V. Jackson, H.-S. Yu, P.P. Hick, and A. Buffington, Center for Astrophysics and.
Modelling photospheric magnetoconvection in the weak field regime Paul Bushby & Steve Houghton (University of Cambridge) Acknowledgements: Mike Proctor,
Using Realistic MHD Simulations for Modeling and Interpretation of Quiet Sun Observations with HMI/SDO I. Kitiashvili 1,2, S. Couvidat 2 1 NASA Ames Research.
Bisector analysis of RR Lyrae atmosphere dynamics at different pulsation and Blazhko phases Elisabeth Guggenberger – IAU Symposium 301, August 2013 Work.
Magneto-Hydrodynamic Equations Mass conservation /t = − ∇ · (u) Momentum conservation (u)/t =− ∇ ·(uu)− ∇ −g+J×B−2Ω×u− ∇ · visc Energy conservation /t.
Inversions based on ME atmospheres Stokes inversions beyond ME atmospheres Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC) Granada, Spain.
A multiline LTE inversion using PCA Marian Martínez González.
Colin Folsom (Armagh Observatory).  Read input  Calculate line components (Zeeman splitting)  Calculate continuum opacity (per window, per atmospheric.
Emerging Flux Simulations & proto Active Regions Bob Stein – Michigan State U. A.Lagerfjärd – Copenhagen U. Å. Nordlund – Niels Bohr Inst. D. Georgobiani.
Spectro-polarimetry of NLTE lines with THEMIS/MSDP Chromospheric Magnetic Structures Results and prospects P. Mein, N. Mein, A. Berlicki,B. Schmieder 1)
Emerging Flux Simulations & semi-Sunspots Bob Stein A.Lagerfjärd Å. Nordlund D. Georgobiani 1.
Three-Dimensional Structure of the Active Region Photosphere as Revealed by High Angular Resolution B. W. Lites et al. 2004, Sol. Phys., 221, 65 Solar.
NLTE polarized lines and 3D structure of magnetic fields Magnetic fields cross canopy regions, not easily investigated by extrapolations, between photosphere.
Nov. 8-11, th Solar-B science meeting Observational Analysis of the Relation between Coronal Loop Heating and Photospheric Magnetic Fields Y. Katsukawa.
Magnetic field oscillations all over the quiet Sun María Jesús Martínez González Instituto de Astrofísica de Canarias.
ILWS, DLR, Dr. Frings ILWS Related Activities in Germany Beijing, August 29, 2011.
CSI /PHYS Solar Atmosphere Fall 2004 Lecture 05 Sep. 29, 2004 Lower Solar Atmosphere: Photosphere and Chromosphere
SHINE 2008 Vector Magnetic Fields from the Helioseismic and Magnetic Imager Steven Tomczyk (HAO/NCAR) Juan Borrero (HAO/NCAR and MPS)
Simulated Solar Plages Robert Stein, David Benson - Mich. State Univ. USA Mats Carlsson - University of Oslo, NO Bart De Pontieu - Lockheed Martin Solar.
Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril.
Measurements of photospheric magnetic field within and around sunspots Rolf Schlichenmaier, Kiepenheuer-Institut für Sonnenphysik ENS, 29.Mai 2006 Image:
Chapter 13 Cont’d – Pressure Effects More curves of growth How does the COG depend on excitation potential, ionization potential, atmospheric parameters.
Simulations and radiative diagnostics of turbulence and wave phenomena in the magnetised solar photosphere S. Shelyag Astrophysics Research Centre Queen’s.
Structure and Flow Field of Sunspot
Lecture 2: Edge detection
Dietmar Kröner, Freiburg
Lecture 2: Edge detection
Ages, Metallicities and Abundances of Dwarf Early-Type Galaxies in the Coma Cluster by Ana Matković (STScI) Rafael Guzmán (U. of Florida) Patricia Sánchez-Blázquez (U.
Long-term trends of magnetic bright points: The evolution of MBP size and modelling of the number of MBPs at disc centre D. Utz [1,2,3], T. Van Doorsselaere.
Solar magnetic elements at 0
Model of solar faculae А.А. Solov’ev,
Contents Introduction to the inversion code
Valentina Abramenko and Kwangsu Ahn
Presentation transcript:

Andreas Lagg, MPS & IMaX and Sunrise team 2nd Sunrise Science Meeting, May , Freiburg TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A

kG fields in plage & network Unresolved: indirect techniques required  Stenflo (1973): line ratio technique Fe 5250 line weakened by 50% in the network field strength up to 2kG size km

kG fields in plage & network  Martinez-Pillet et al. (1997): inversions AR plage: 1.4kG vertical fields require filling factor

kG fields in plage & network  Rüedi et al. (1992), Rabin (1992) complete splitting of Fe Å lines

Temperatures in plage & network  Solanki (1986), Solanki & Brigljevic (1992) temperature of continuum forming layers from line ratios of CI and Fe II (Stokes I and V) magnetic elements have on average brighter continuum than quiet Sun when FF is small derived from FF 5-8%  1000° hotter than avg. quiet Sun in line- forming layer

Motivation  I profile extremely weak (7%)  high temperature  large Stokes V (5%)  ME-Inv.: ≥ 1 kG Can we finally resolve the quiet Sun magnetic structures?

Tool: Inversions (non-ME)  numerical solution of RTE (SPINOR)  free parameters: B, INC, AZI, VLOS – height independent VMIC (fix to 0.8km/s) VMAC (avg QS: 2km/s) T0, TGRAD  normalization to HSRA (J.M. Borrero)  convolve with 85mÅ Gaussian

HSRA cont. =1 (=avg. quiet Sun) (1)network patch (2)center of granule (3)intergran. lane normalization of Stokes profiles to average QS profile:  avg QS cont-level := 1  avg QS = HSRASP  change HSRASP with linear gradient (T0, TGRAD)

HSRA cont. :=1 (=avg. quiet Sun) normalization of Stokes profiles to average QS profile:  avg QS cont-level := 1  avg QS = HSRASP  change HSRASP with linear gradient (T0, TGRAD)

Cont. normalization: HSRA

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A (1)network patch (2)center of granule (3)intergran. lane

Summary & Conclusions Small scale flux tubes in quiet Sun:  field strengths up to 1.3 kG  temperatues at line formation height 1000 K higher than quiet Sun  shallow temperature gradient Without requiring a filling factor!  ubiquitous  correlation with bright points?  temporal evolution?