On the Effectiveness of Probabilistic Packet Marking for IP Traceback under Denial of Service Attack INFOCOM 2001. Twentieth Annual Joint Conference of.

Slides:



Advertisements
Similar presentations
Author : Chia-Hung Lin, Chia-Yin Hsu, and Sun-Yuan Hsieh Publisher : IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.
Advertisements

Algorithms Chapter 15 Dynamic Programming - Rod
Pricing and Power Control in a Multicell Wireless Data Network Po Yu Chen October, 2001 IEEE Journal on Select Areas in Communications.
FCU, Department of ECE, IC Design Research Lab. TEL: # 4945 Pre-SIm , Post-Sim.
1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
1 Secure Context-sensitive Authorization 2005 Author : Kazuhiro Minami, David Kotz Presented by Shih Yu Chen.
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
JAVA 程式設計與資料結構 第十四章 Linked List. Introduction Linked List 的結構就是將物件排成一列, 有點像是 Array ,但是我們卻無法直接經 由 index 得到其中的物件 在 Linked List 中,每一個點我們稱之為 node ,第一個 node.
請問 : 科技融入教學再你的心目中只是一 個不同於其他教學法的選擇 (optional choice) ? 或是一個必要的需要 (demanding needs)?
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
Network Connections ★★★☆☆ 題組: Contest Archive with Online Judge 題號: Network Connections 解題者:蔡宗翰 解題日期: 2008 年 10 月 20 日 題意:給你電腦之間互相連線的狀況後,題.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
Introduction to Java Programming Lecture 10 Array I Declaring, Creating, and Initializing Arrays.
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
7.1 背景介紹 7.2 多解析度擴展 7.3 一維小波轉換 7.4 快速小波轉換 7.5 二維小波轉換 7.6 小波封包
Monte Carlo Simulation Part.1 Dept. Phys., Tunghai Univ. Numerical Methods, C. T. Shih.
: Little Red Riding Hood ★★★☆☆ 題組: Contest Volumes Archive with Online Judge 題號: 11067: Little Red Riding Hood 解題者:陳明凱 解題日期: 2008 年 3 月 14 日 題意:
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
Johnson’s algorithm Johnson’s演算法可用於計算All pairs shortest path問題。
短缺,盈餘與均衡. 遊戲規則  老師想出售一些學生喜歡的小食。  老師首先講出價錢,有興趣買的請舉手。
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
公司加入市場的決定. 定義  平均成本 = 總成本 ÷ 生產數量 = 每一單位產量所耗的成本  平均固定成本 = 總固定成本 ÷ 生產數量  平均變動成本 = 總變動成本 ÷ 生產數量.
生產系統導論 生產系統簡介 績效衡量 現代工廠之特徵 管理機能.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
Dynamic Multi-signatures for Secure Autonomous Agents Panayiotis Kotzanikolaou Mike Burmester.
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/25 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH 2.4~CH 2.6 &
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
: Expect the Expected ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11427: Expect the Expected 解題者:李重儀 解題日期: 2008 年 9 月 21 日 題意:玩一種遊戲 (a game.
-Antidifferentiation- Chapter 6 朝陽科技大學 資訊管理系 李麗華 教授.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Linguistics phonetic symbols. 先下載 IPA 字型檔案,執行安裝。 由於這個程式的字型目錄設定錯誤, 所以等重新開機時就會發現字型消失。 所以必須根據以下步驟來讓 Windows 加入 IPA 字型。
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
廣電新聞播報品質電腦化 評估系統之研發 國立政治大學 資訊科學系 指導教授:廖文宏 學生:蘇以暄.
Chapter 10 m-way 搜尋樹與B-Tree
網路介紹及其運用 講師陳炯勳. 5-2 IP 協定 ( 一 ) IP 協定運作 (1) – 網路成員:主機 (Host) 與路由器 (Router) – 路由表 – 電報傳輸運作.
: Expressions ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10157: Expressions 解題者:張庭愿 解題日期: 2009 年 8 月 16 日 題意:所有的括號必須成對,且必須先出現過左 括號後才能出現右括號,如果有.
Chapter 7 Sampling Distribution
: Help My Brother ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11033: Help My Brother 解題者: 呂明璁 解題日期: 2007 年 5 月 14 日.
Data Mining: A Closer Look Chapter Data Mining Strategies.
ask the customer by asking the data. 2 背景介紹 7-11 是美國最大連鎖便利商店 –2500 家直營店, 3300 家加盟店 當冰箱問世之後,便利商店可販售的物品增加 每間分店店經理會逐一詢問顧客最需要哪些可冷 凍、冷藏的物品,以充分服務顧客 此種方法不切實際.
: Problem E Antimatter Ray Clearcutting ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11008: Problem E Antimatter Ray Clearcutting 解題者:林王智瑞.
第 6 章 迴圈結構 6-1 計數迴圈 6-1 計數迴圈 6-2 條件迴圈 6-2 條件迴圈 6-3 巢狀迴圈 6-3 巢狀迴圈 6-4 While/End While 迴圈 6-4 While/End While 迴圈 6-5 跳出迴圈 6-5 跳出迴圈 6-6 VB.NET 的錯誤處理 6-6 VB.NET.
連續隨機變數 連續變數:時間、分數、重量、……
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
Distribute Video Coding 林明德. Lossless Compression 不考慮 X 和 Y 的相關性,直接傳送 X 和 Y 各需要使用 3bits ,總共傳出 的 bit 數為 6bits 。 (1) 考慮 X 和 Y 的相關性 (2) 將 Y 直接傳出,使用 3bits.
:Commandos ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11463: Commandos 解題者:李重儀 解題日期: 2008 年 8 月 11 日 題意: 題目會給你一個敵營區內總共的建築物數,以及建築物 之間可以互通的路有哪些,並給你起點的建築物和終點.
-Artificial Neural Network- Matlab操作介紹 -以類神經網路BPN Model為例
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
著作權所有 © 旗標出版股份有限公司 第 14 章 製作信封、標籤. 本章提要 製作單一信封 製作單一郵寄標籤.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
Exploring Mediation Between Environmental and Structural Attributes: The Penetration of Communication Technologies in Manufacturing Organizations 陳志凡
Graph Theory Chapter 7 Eulerian Graphs 大葉大學 (Da-Yeh Univ.) 資訊工程系 (Dept. CSIE) 黃鈴玲 (Lingling Huang)
SYSTEM RELIABILITY OPTIMIZATION CONSIDERING UNCERTAINTY: MINIMIZATION OF THE COEFFICIENT OF VARIATION FOR SERIES- PARALLEL SYSTEMS Hatice Tekiner-Mogulkoc,
REVERSIBLE AND HIGH- CAPACITY DATA HIDING IN MEDICAL IMAGES 報告學生:翁偉傑 1 Published in IET Image Processing Received on 25th June 2008 Revised on 15th June.
Packet-Marking Scheme for DDoS Attack Prevention
論文進度報告 Advisor: Professor Frank Y.S. Lin Presented by G.W. Chen 陳冠瑋.
Chapter 10 Independence, Dominance, and Matchings
Presentation transcript:

On the Effectiveness of Probabilistic Packet Marking for IP Traceback under Denial of Service Attack INFOCOM Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Presented by FanChiang C.W. Advisor: Prof. Frank Y.S. Lin

2015/5/17OPLab, NTUIM 2 Agenda Abstract Introduction Probabilistic Packet Marking and Traceback DoS traceback minimax problem DDoS traceback problem Dynamic PPM scheme

2015/5/17OPLab, NTUIM 3 Abstract The optimal decision problem - the victim can choose the marking probability whereas the attacker can choose the spoofed marking value, source address, and attack volume - can be expressed as a constrained minimax optimization problem, where the victim chooses the marking probability such that the number of forgeable attack paths is minimized.

2015/5/17OPLab, NTUIM 4 Introduction Two contributions First, it shows the trade-off relation between victim and attacker, which is a function of marking probability, path length, and traffic volume. Second, for a given attack volume, by mounting DDoS attack, the uncertainty factor might be amplified.

Probabilistic Packet Marking and Traceback 2015/5/17OPLab, NTUIM 5

2015/5/17OPLab, NTUIM 6 Probabilistic Packet Marking and Traceback Given network is as a directed graph G = (V,E), where V is the set of nodes and E is the set of edges. The edges denote physical links between elements in V. Let S ⊂ V denote the set of attackers and let t ∋ V \ S denote the victim. |S| = 1 (DoS)

Probabilistic Packet Marking and Traceback (con’t) We assume that routes are fixed 1, And Attack path A is presented as 1. On the IP Internet, the majority of TCP sessions do not experience route changes during their connection lifetime. Generalization of PPM under dynamic routing (the routing process must be specified) is a problem for future work. 2015/5/17OPLab, NTUIM 7

2015/5/17OPLab, NTUIM 8 Probabilistic Packet Marking and Traceback (con’t) A C B D E F G

2015/5/17OPLab, NTUIM 9 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets A C B D E F G

A C B D E F G 2015/5/17OPLab, NTUIM 10 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets

Probabilistic Packet Marking and Traceback (con’t) A packet x is assumed to have a marking field where the identity of a (v, v’) ∊ E traversed can be inscribed. A packet travels on the attack path A sequentially. At a hop v i ∊ {v 1, …, v d }, packet x is marked with the edge value (v i-1, v i ), i=1, 2,…, d., with probability p (0 ≤ p ≤ 1) where v 0 = s. This is probabilistic marking. 2015/5/17OPLab, NTUIM 11

A C B D E F G 2015/5/17OPLab, NTUIM 12 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets

A C B D E F G 2015/5/17OPLab, NTUIM 13 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets

2015/5/17OPLab, NTUIM 14 Path Sampling α i (p) = p(1-p) d-i (1) α 0 (p) = (1-p) d ( attacker can hide his identity or fool defender ) (2) When N packets are transmitted, the expected value of packets reaching target t marked by r i is n i (p) = Nα i (p) Note that α 1 (p) ≦ α 2 (p) ≦ …… ≦ α d (p)

2015/5/17OPLab, NTUIM 15 Path Sampling (con’t) To receive a marked packet form v 1 requires N ≧ 1/α 1 (p) Because N is under attacker’s control from purely sampling view point, edge(s, v 1 ) is the weakest link.

A C B D E F G 2015/5/17OPLab, NTUIM 16 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets

A C B D E F G 2015/5/17OPLab, NTUIM 17 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets

A C B D E F G 2015/5/17OPLab, NTUIM 18 Probabilistic Packet Marking and Traceback (con’t) packets Packet marked by Attacker Packets marked by a router Attack packets Marked by a router Attack packets ???

2015/5/17OPLab, NTUIM 19 Path Sampling (con’t) which has the solution p ≦ ½. In general, we may consider p ≦ /d, d = 10 then p ≦ 0.067

Path Sampling (con’t) The optimal selection of N, d, and x 0 by the attacker, and correspondingly optimal selection of p by the victim to achieve their individual, conflicting objectives lies at the heart of the probabilistic PPM approach to source identification. 2015/5/17OPLab, NTUIM 20

2015/5/17OPLab, NTUIM 21 Traceback Problem (con’t) Marking spoofed variable x 0 can be fixed by following thereotic argument Let n s i (p) be the number of spoofed packets arriving at t marked by(u i,v 1 ) n o (p) = Σ m i=1 n s i (p). If it holds that then all m+1 paths are equally likely yielding the same outcome in terms of collected marking values at t

2015/5/17OPLab, NTUIM 22 Traceback Problem (con’t) We call m – a function of p and spoofing variable x 0 - the uncertainty factor with respect to marking probability p. The larger m is, the more the processing cost incurred by the victim to trace back the attack source.

Traceback Problem (con’t) Thus, the objective of the attacker is to maximize m, whereas the objective of the victim is to minimize m 2015/5/17OPLab, NTUIM 23

2015/5/17OPLab, NTUIM 24 Traceback Problem (con’t) The formulation in (III.5) does not incorporate the attack volume N and thus unduly favors the victim. A sampling constraint is added by requiring Nα 1 (p) = N p(1-p) d-1 ≧ 1 (III.6)

2015/5/17OPLab, NTUIM 25 Traceback Problem (con’t) Thus the refined minimax optimization reflecting the victim’s sampling constraint is given by Nα 1 (p) = N p(1-p) d-1 ≧ 1 as a function of p has a unimodal (or bell) shape with peak at p = 1/d

ANALYSIS OF SINGLE-SOURCE DOS ATTACK 2015/5/17OPLab, NTUIM 26

ANALYSIS OF SINGLE-SOURCE DOS ATTACK And IV.1 can be derandomized - replaced by a deterministic procedure that emulates uniform generation. 2015/5/17OPLab, NTUIM 27 n o (p) = Σ m i=1 n s i (p).

ANALYSIS OF SINGLE-SOURCE DOS ATTACK (con’t) Given p (determined by the victim), the attacker can achieve m = 1/p /5/17OPLab, NTUIM 28

ANALYSIS OF SINGLE-SOURCE DOS ATTACK (con’t) With constraint III.6 we can define and it can be checked that when d ≧ 2, L is convex in p 2015/5/17OPLab, NTUIM 29

ANALYSIS OF SINGLE-SOURCE DOS ATTACK (con’t) It can be viewed as minimization problems of the objective function 1/p -1 over L N for N= N 0, N 0 +1,…… The next result gives a performance bound on the attacker’s ability to hide his identity under PPM. 2015/5/17OPLab, NTUIM 30

ANALYSIS OF SINGLE-SOURCE DOS ATTACK (con’t) Theorem 2 shows that the maximum achievable uncertainty factor cannot exceed d-1, the distance between the attacker and victim. And on the internet, most path lengths are bounded by 25 [29] [29] Wolfgang Theilmann and Kurt Rothermel, “Dynamic distance maps of the Internet,” in Proc. of IEEE INFOCOM 2000, Mar /5/17OPLab, NTUIM 31

ANALYSIS OF SINGLE-SOURCE DOS ATTACK (con’t) d = 10, N = 26 Thus the attacker, by judiciously choosing the attack volume, can maximally hide his identity given by d /5/17OPLab, NTUIM 32

Approximation of Uncertainty Factor Np(1-p) d-1 ≥ 1, The equation, Np(1-p) d-1 = 1, is transformed to the polynomial x n – x n-1 + c by substitution of p, N, d with 1-x, 1/c, n, respectively. We divide Np(1-p) d-1 = 1 by N, and represent p as 1-x (0 ≤ x ≤ 1), thus, it becomes 2015/5/17OPLab, NTUIM 33

Approximation of Uncertainty Factor (con’t) Assuming N ≫ 1, thus, 1/N ≈ 0. First consider x d-1 close to 1, left hand side becomes (1-1/N) d-1 ->1, as N -> ∞. Next, When(1-1/N) d-1 -> 0, the approximate solution x = 1/N 1/d /5/17OPLab, NTUIM 34

Approximation of Uncertainty Factor (con’t) Thus x is approximately 1-(1/N) or 1/N 1/d-1. Therefore, 2015/5/17OPLab, NTUIM 35

Approximation of Uncertainty Factor (con’t) The maximum uncertainty value m of the min-max optimization problem is given by N = 10 5,d = 25 then m is ; N = 10 7,d = 25 then m is /5/17OPLab, NTUIM 36

Marking Probability 2015/5/17OPLab, NTUIM 37

Marking Probability (con’t) 2015/5/17OPLab, NTUIM 38

Marking Probability (con’t) d ∝ 1/p m ∝ 1/p Given N, as distance d ↓, the expected number of spoofed packets, N s ↑, at any given value of p When the source of an attack is far from the victim, the attacker becomes more potent at impeding traceback 2015/5/17OPLab, NTUIM 39

Attack Distance 2015/5/17OPLab, NTUIM 40

Attack Distance (con’t) Since the distance between an attacker and victim is bounded on the Internet, an attacker has limited ability to hide his location when subject to probabilistic packet marking. 2015/5/17OPLab, NTUIM 41

Attack Volume To satisfy sampling constrain, N needs to be at least d d /(d-1) d-1 As N increases, the victim can reduce the forgeable paths to less than d /5/17OPLab, NTUIM 42

V. DDoS Attack 2015/5/17OPLab, NTUIM 43

DDoS Attack Following the uncertainty optimization framework, given a desired attack Volume N, an amplification factor of M can be trivially achieved by mounting N/M -volume attacks from M separate attack sites. 2015/5/17OPLab, NTUIM 44

DDoS Attack (con’t) m*( ∙ ) is a function depicting the optimum (i.e., minimax) uncertainty factor for the traffic volume given in the argument. 2015/5/17OPLab, NTUIM 45

DDoS Attack Model – Classification Any-source traceback, the attacker is assumed to be vulnerable to further traceback once a compromised attack host is identified. Thus the attacker seeks to fortify the weakest link—i.e., maximize the uncertainty factor of each individual attack host—whereas the victim tries to find a weak attack host. 2015/5/17OPLab, NTUIM 46

DDoS Attack Model - Classification(con’t) All-source traceback, we assume the attacker is able to mount stateless intrusions when gathering attack hosts, and thus his objective is to maximize total uncertainty (vs. individual uncertainty in the any-source traceback case) since quick traceback of individual attack hosts does not present a danger with respect to revealing traceback information /5/17OPLab, NTUIM 47

DDoS Attack Model – Classification (con’t) The attacker’s objective is to maximize the number of forged paths that the victim has to process. And the victim’s goal is to isolate or shut down traffic flow emanating from comprised hosts. 2015/5/17OPLab, NTUIM 48

DDoS Attack Model - Traceback Analysis Given M distinct sources, each sources s i sends N i packets to victim v at d i distant for 1 ≤ i ≤ M An attack path is represented by A i = (s i, v i,1, v i,2, …v i,d, t). Without loss of generality, assume d i ≤ d j, for i < j 2015/5/17OPLab, NTUIM 49

DDoS Attack Model - Traceback Analysis (con’t) Thus the expected number of spoofed packets from s i is for 1 ≤ i ≤ M The expected number of packets marked by v i,1 is 2015/5/17OPLab, NTUIM 50

DDoS Attack Model - Traceback Analysis (con’t) An attack host N Si may use to increase its uncertainty factor m i or it may use its forged packets to help amplify the uncertainty factor m j of some other attack host j ≠ i 2015/5/17OPLab, NTUIM 51

DDoS Attack Model - Traceback Analysis (con’t) Thus, the any-source traceback case reduces to the single-source traceback problem. 2015/5/17OPLab, NTUIM 52

DDoS Attack Model - Traceback Analysis (con’t) 2015/5/17OPLab, NTUIM 53

Numerical Evaluation of Traceback Let N i = N/M, d i = d, 1 ≤ i ≤ M, which facilitates comparability. m*( N i ) be the uncertainty factor achievable by N i m*( N/M ) /m*( N ) represents the expansion rate to uncertainty factor with respect to the distribution factor M 2015/5/17OPLab, NTUIM 54

Numerical Evaluation of Traceback (con’t) 2015/5/17OPLab, NTUIM 55

Conclusion PPM has the advantages of efficiency and implementability over DPM, however, it has the potential drawback that an attacker may impede traceback by sending packets with spoofed marking field values as well as spoofed source IP addresses. 2015/5/17OPLab, NTUIM 56

Conclusion (con’t) While it is always possible for an attacker to impede exact traceback by the victim, the attacker’s ability to affect uncertainty is limited in internetworks with bounded diameters 2015/5/17OPLab, NTUIM 57

考量到 OD pair 的長度 d ,將簡短介紹下 一篇 Dynamic PPM scheme 2015/5/17OPLab, NTUIM 58

Efficient Dynamic Probabilistic packet marking for IP traceback Networks, ICON2003. The 11th IEEE International Conference on 2015/5/17OPLab, NTUIM 59

Agenda Introduction Preliminaries Dynamic Probabilistic Packet Marking Performance Analysis Concluding remarks 2015/5/17OPLab, NTUIM 60

Introduction It had been shown that PPM suffers from uncertainty under attack with spoofed packets During DDoS attack, the uncertainty factor might be amplified significantly, which may diminish the effectiveness of PPM 2015/5/17OPLab, NTUIM 61

Introduction (con’t) To improve the effectiveness of PPM, this paper proposed a new scheme DPPM. Instead of a fixed marking probability, DPPM choose marking probability as an inverse function of the length of an OD pair by TTL field 2015/5/17OPLab, NTUIM 62

Preliminaries – Issues in Choosing Probability Consider an attack path A = (a, r 1, r 2, …, r D, v) where a and v denote the attacker and victim of a DOS incident, D + 1 is the distance between them, and r i (i = 1, 2,..., D) denote D routers in the attack path. 2015/5/17OPLab, NTUIM 63

Preliminaries – Issues in Choosing Probability (con’t ) Let p i represent the marking probability of router r i. Define leftover probability for router r i, denoted by a i, a i = p i x π D j = i+1 (1 - p j ) (1). Because in PPM, p is fixed, thus a i = p(1 - p) d-i, (2) Therefore, the leftover probability is geometrically smaller the closer it is to the attacker. 2015/5/17OPLab, NTUIM 64

Preliminaries – Issues in Choosing Probability (con’t) Let N denote the total number of attacking packets (attack volume) from an attacker to a victim. 2015/5/17OPLab, NTUIM 65

Preliminaries – Issues in Choosing Probability (con’t) The probability that a packet reaching the victim without any marking is a 0 = (1 - p) D Attackers may spoof the marking field with false value in order to hide themselves or the attack path. If a packet is not marked by any router along the path, the spoofed packet may result in false information during the path reconstruction 2015/5/17OPLab, NTUIM 66

Preliminaries – Issues in Choosing Probability (con’t) 2015/5/17OPLab, NTUIM 67

Preliminaries – Issues in Choosing Probability (con’t) 2015/5/17OPLab, NTUIM 68

DPPM To have an uniform leftover probability for all routers. To removed the uncertainty factor, introduced by spoofed packets, completely if every packet got a legitimate marking along the path. 2015/5/17OPLab, NTUIM 69

DPPM (con’t) 2015/5/17OPLab, NTUIM 70

DPPM (con’t) Eq. 3 shows that each router along the attack path has the same probability to leave its information in the marking field. In other words, the victim has an equal probability to obtain each router's information along the path despite their distance from the victim. 2015/5/17OPLab, NTUIM 71

DPPM (con’t) routers 2015/5/17OPLab, NTUIM 72

DPPM (con’t) 2015/5/17OPLab, NTUIM 73

Challenge on spoofed TTL value 2015/5/17OPLab, NTUIM 74

Challenge on spoofed TTL value 2015/5/17OPLab, NTUIM 75

Challenge on spoofed TTL value (con’t) Attacker may use TTL = 129, and then DPPM would choose p as 1/126(= ). And attacker can get away without any trace. 2015/5/17OPLab, NTUIM 76

Challenge on spoofed TTL value (con’t) 2015/5/17OPLab, NTUIM 77

Challenge on spoofed TTL value (con’t) 2015/5/17OPLab, NTUIM 78

Summary Path length d i, marking probability p, spoofing packet rate p s, attack volume N, spoofed packets N s, uncertainty factor m d i ↑ m iMAX ↑ ; p s ↑ m↑ ; p↑ m ↓; N↓ m ↑; 2015/5/17OPLab, NTUIM 79

Summary (con’t) 在這篇 PAPER 當中所參考的 PPM 是一 個 FRAMEWORK, 一條 path 上的每個 router 只要標注一個以上的封包就可以 完成一條 attack path reconstruction 在 IEEE/ACM TRANSACTIONS PN NETWORKING VOL16 Feb/2008 提 出了一個適用 DDoS 的 PPM SCHEME 2015/5/17OPLab, NTUIM 80

Summary (con‘t) 為了提升 PPM 的安全性,此篇 PAPER 提出 message fragmentation ,將標注 資訊切分成數個資料段,每個 router 每 次標注時只隨機注入一個資料段。因此 victim 需要收集更多的 packets 才能將資 料段重組成回溯資訊、重建攻擊路徑, 找出最適當的 router 並開啟 filter 。 在不同的 PPM 架構下, m=1/p -1 可能 需要微調參數。 2015/5/17OPLab, NTUIM 81

Summary (con’t) Attacker 增加 defender 要處理的攻擊路徑 Spoof marking field 誤導 defender 攻擊 來源消耗防禦資源 Defender 收集到足夠的路徑資訊之後找最適當的 router 開啟 filter ;如果有某條路徑沒有 filter 可以過濾攻擊封包,利用 routing strategy 將攻擊封包引導至最近的 filter 上過濾。 2015/5/17OPLab, NTUIM 82

Summary (con’t) 2015/5/17OPLab, NTUIM 83 政祐學長 My Work PPM Scheme and false positive rate XO Spoof packets may amplify error rate and may increase victim’s processing cost XO Rerouting OO Filter allocation 利用 LR 、次梯度法與 經驗法則找出 filter 最 佳配置最小化 collateral damage 使用 PPM traceback 技術同時 考慮誤判率、攻擊特性 (N, d, 拓樸架構 ) 、 spoofed information ,令 filter 的位置是 給定的並配合 LR 找出最佳的 ON -配置策略最小化 collateral damage

2015/5/17OPLab, NTUIM 84 Thanks for your listening