Rickard Karlsson IEEE Aerospace Conf 2007 Target Tracking Performance Evaluation A General Software Environment for Filtering Rickard Karlsson Gustaf Hendeby.

Slides:



Advertisements
Similar presentations
Mobile Robot Localization and Mapping using the Kalman Filter
Advertisements

Jose-Luis Blanco, Javier González, Juan-Antonio Fernández-Madrigal University of Málaga (Spain) Dpt. of System Engineering and Automation May Pasadena,
State Estimation and Kalman Filtering CS B659 Spring 2013 Kris Hauser.
Reducing Drift in Parametric Motion Tracking
(Includes references to Brian Clipp
Robot Localization Using Bayesian Methods
IR Lab, 16th Oct 2007 Zeyn Saigol
Jose-Luis Blanco, Juan-Antonio Fernández-Madrigal, Javier González University of Málaga (Spain) Dpt. of System Engineering and Automation Sep Nice,
Simultaneous Localization and Mapping
Uncertainty Representation. Gaussian Distribution variance Standard deviation.
Kalman Filter CMPUT 615 Nilanjan Ray. What is Kalman Filter A sequential state estimator for some special cases Invented in 1960’s Still very much used.
Introduction to Mobile Robotics Bayes Filter Implementations Gaussian filters.
1 Robust Video Stabilization Based on Particle Filter Tracking of Projected Camera Motion (IEEE 2009) Junlan Yang University of Illinois,Chicago.
Reliable Range based Localization and SLAM Joseph Djugash Masters Student Presenting work done by: Sanjiv Singh, George Kantor, Peter Corke and Derek Kurth.
SLAM: Simultaneous Localization and Mapping: Part I Chang Young Kim These slides are based on: Probabilistic Robotics, S. Thrun, W. Burgard, D. Fox, MIT.
Nonlinear and Non-Gaussian Estimation with A Focus on Particle Filters Prasanth Jeevan Mary Knox May 12, 2006.
Discriminative Training of Kalman Filters P. Abbeel, A. Coates, M
Particle Filters for Mobile Robot Localization 11/24/2006 Aliakbar Gorji Roborics Instructor: Dr. Shiri Amirkabir University of Technology.
Probabilistic Robotics
Tracking a maneuvering object in a noisy environment using IMMPDAF By: Igor Tolchinsky Alexander Levin Supervisor: Daniel Sigalov Spring 2006.
Stanford CS223B Computer Vision, Winter 2006 Lecture 11 Filters / Motion Tracking Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg.
Estimation and the Kalman Filter David Johnson. The Mean of a Discrete Distribution “I have more legs than average”
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Novel approach to nonlinear/non- Gaussian Bayesian state estimation N.J Gordon, D.J. Salmond and A.F.M. Smith Presenter: Tri Tran
Tracking with focus on the particle filter
An introduction to Particle filtering
G. Hendeby Performance Issues in Non-Gaussian Filtering Problems NSSPW ‘06 Corpus Christi College, Cambridge Performance Issues in Non-Gaussian Filtering.
Particle Filtering. Sensors and Uncertainty Real world sensors are noisy and suffer from missing data (e.g., occlusions, GPS blackouts) Use sensor models.
G. Hendeby Recursive Triangulation Using Bearings-Only Sensors TARGET ‘06 Austin Court, Birmingham Recursive Triangulation Using Bearings-Only Sensors.
ROBOT MAPPING AND EKF SLAM
Bayesian Filtering for Robot Localization
Muhammad Moeen YaqoobPage 1 Moment-Matching Trackers for Difficult Targets Muhammad Moeen Yaqoob Supervisor: Professor Richard Vinter.
1 Miodrag Bolic ARCHITECTURES FOR EFFICIENT IMPLEMENTATION OF PARTICLE FILTERS Department of Electrical and Computer Engineering Stony Brook University.
Markov Localization & Bayes Filtering
Brian Renzenbrink Jeff Robble Object Tracking Using the Extended Kalman Particle Filter.
Computer vision: models, learning and inference Chapter 19 Temporal models.
Methee Srisupundit Final Defense.  Intelligent Vehicle  Localization  Observer (Estimator) Kalman Filter Particle Filter  Methodology Control Input.
From Bayesian Filtering to Particle Filters Dieter Fox University of Washington Joint work with W. Burgard, F. Dellaert, C. Kwok, S. Thrun.
SIS Sequential Importance Sampling Advanced Methods In Simulation Winter 2009 Presented by: Chen Bukay, Ella Pemov, Amit Dvash.
Mapping and Localization with RFID Technology Matthai Philipose, Kenneth P Fishkin, Dieter Fox, Dirk Hahnel, Wolfram Burgard Presenter: Aniket Shah.
Kalman Filter (Thu) Joon Shik Kim Computational Models of Intelligence.
Jamal Saboune - CRV10 Tutorial Day 1 Bayesian state estimation and application to tracking Jamal Saboune VIVA Lab - SITE - University.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Probabilistic Robotics Bayes Filter Implementations.
Young Ki Baik, Computer Vision Lab.
Computer Science, Software Engineering & Robotics Workshop, FGCU, April 27-28, 2012 Fault Prediction with Particle Filters by David Hatfield mentors: Dr.
Overview Particle filtering is a sequential Monte Carlo methodology in which the relevant probability distributions are iteratively estimated using the.
HQ U.S. Air Force Academy I n t e g r i t y - S e r v i c e - E x c e l l e n c e Improving the Performance of Out-of-Order Sigma-Point Kalman Filters.
An Introduction to Kalman Filtering by Arthur Pece
State Estimation and Kalman Filtering
NCAF Manchester July 2000 Graham Hesketh Information Engineering Group Rolls-Royce Strategic Research Centre.
Unscented Kalman Filter 1. 2 Linearization via Unscented Transform EKF UKF.
Sequential Monte-Carlo Method -Introduction, implementation and application Fan, Xin
CSC2515: Lecture 7 (post) Independent Components Analysis, and Autoencoders Geoffrey Hinton.
Short Introduction to Particle Filtering by Arthur Pece [ follows my Introduction to Kalman filtering ]
Particle Filtering. Sensors and Uncertainty Real world sensors are noisy and suffer from missing data (e.g., occlusions, GPS blackouts) Use dynamics models.
Using Kalman Filter to Track Particles Saša Fratina advisor: Samo Korpar
Tracking with dynamics
Nonlinear State Estimation
Cameron Rowe.  Introduction  Purpose  Implementation  Simple Example Problem  Extended Kalman Filters  Conclusion  Real World Examples.
The Unscented Particle Filter 2000/09/29 이 시은. Introduction Filtering –estimate the states(parameters or hidden variable) as a set of observations becomes.
Robust Localization Kalman Filter & LADAR Scans
CSC2535: Computation in Neural Networks Lecture 7: Independent Components Analysis Geoffrey Hinton.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
Variational filtering in generated coordinates of motion
PSG College of Technology
Unscented Kalman Filter
Filtering and State Estimation: Basic Concepts
A Short Introduction to the Bayes Filter and Related Models
Jose-Luis Blanco, Javier González, Juan-Antonio Fernández-Madrigal
Presentation transcript:

Rickard Karlsson IEEE Aerospace Conf 2007 Target Tracking Performance Evaluation A General Software Environment for Filtering Rickard Karlsson Gustaf Hendeby Automatic Control Linköping University, SWEDEN

Rickard Karlsson IEEE Aerospace Conf 2007 Motivating Example Range-Only Measurements Two Sensors with range uncertainties Performance? General Software for filtering

Rickard Karlsson IEEE Aerospace Conf 2007 Motivating Example: General Filtering Software  Surface/UW navigation  Robotics  Bearings-Only Tracking  Track Before Detect Performance usually using RMSE Applications

Rickard Karlsson IEEE Aerospace Conf 2007 Outline  Nonlinear filtering using particle filters  Performace measure for nonlinear filtering Kullback-Divergence vs RMSE  General Filtering Software Object oriented design Design Patterns  Examples

Rickard Karlsson IEEE Aerospace Conf 2007 Filtering STATE SPACE MODEL Process noise Measurement noise PROBABILISTIC DESCRIPTION

Rickard Karlsson IEEE Aerospace Conf 2007 Bayesian Recursions: Probability Density Function (pdf) M.U. T.U.

Rickard Karlsson IEEE Aerospace Conf 2007 Filter Evaluation: Mean Square Error (MSE) Mean square error (MSE)  Standard performance measure  Approximates the estimation error covariance  Bounded by the Cramér-Rao Lower Bound (CRLB)  Ignores higher-order moments! Compare the true trajectory with the estimated!!! What can we do instead?

Rickard Karlsson IEEE Aerospace Conf 2007 Kullback-Leibler Information

Rickard Karlsson IEEE Aerospace Conf 2007 Filter Evaluation: Kullback Divergence (KD) Kullback Divergence (KD)  Compares the distance between two distributions  Captures all moments of the distributions  True PDF from a grid-based method  True PDF from PF, compare sub-optimal filters  Smoothing kernel needed for implementation Compare the true PDF with the estimated PDF.

Rickard Karlsson IEEE Aerospace Conf 2007 Generalized Gaussian Generalized Gaussion Distribution Kullback Divergence PDF

Rickard Karlsson IEEE Aerospace Conf 2007 Example 1: One-dimensional Nonlinear System Probability Density Function x Time

Rickard Karlsson IEEE Aerospace Conf 2007 Example 1: One-dimensional Nonlinear System Kullback Divergence RMSE KD for one realization comparing PF and EKF RMSE for 400 MC simulations

Rickard Karlsson IEEE Aerospace Conf 2007 Example 2: Range-Only Measurement  Estimate target position from range-only measurements  Nonlinear measurements but Gaussian noise  Posterior distribution: bimodal  Point Estimate: EKF vs PF the same, i.e. same RMSE

Rickard Karlsson IEEE Aerospace Conf 2007 Example 2: Simulation Results for Range-Only MSE KD No Difference! KD Indicates a Difference! EKF PF EKF PF

Rickard Karlsson IEEE Aerospace Conf 2007 Calculating the probability EKF PF&True Probability for target within the circle with radius R

Rickard Karlsson IEEE Aerospace Conf 2007 Example 3: Linear -- Non-Gaussian Noise  MSE similar for both KF and PF!  KL is better for PF, which is accounted for by multimodal target distribution which is closer to the truth

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Environment in C++  MATLAB  Easy to use  Weak typing  Somewhat slow  Object oriented (not really)  C++  More complicated to use  Fast  Strong typing  Object oriented  Can be implemented ! F++: Fairly easy to use Just provide models f(x), h(x), etc Estimators: EKF, PF, IMM, UKF Open Source code available OOP & Design Patterns

Rickard Karlsson IEEE Aerospace Conf 2007 Object Oriented Programming (OOP) Inheritance Encapsulation Overloading

Rickard Karlsson IEEE Aerospace Conf 2007 Design Patterns – What is it? Smart Pointers Singletons Object factories … “Design patterns are general, programming language independent, conceptual high level solutions to common problems” Example:

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML

Rickard Karlsson IEEE Aerospace Conf 2007 Class: Model

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML

Rickard Karlsson IEEE Aerospace Conf 2007 Class: Noise

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML

Rickard Karlsson IEEE Aerospace Conf 2007 Class: Estimator

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML Ex: Linear Gaussian system with KF and MATLAB support

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML Ex: Non-Linear Gaussian system with PF and MATLAB support

Rickard Karlsson IEEE Aerospace Conf 2007 Particle Filtering in Practice General model Common models for tracking and navigation

Rickard Karlsson IEEE Aerospace Conf 2007 F++ A General Filtering Framwork in C++ ModelNoiseEstimatorI/O LinModel MultiModel GenericModel Gauss SumNoise … EKF PF IMM UKF MPF MATLAB XML Ex: Linear Dynamics, Non-Linear Measurements Gaussian noise with PF and MATLAB support

Rickard Karlsson IEEE Aerospace Conf 2007 Code: Main Estimation Loop Time Update Meas. Update Estimate TU/MU/Est This works for any estimator! estimate u y filter

Rickard Karlsson IEEE Aerospace Conf 2007 Code: Main Estimation Loop Estimator Time Update Meas. Update Estimate This works for any estimator! estimate u y filter

Rickard Karlsson IEEE Aerospace Conf 2007 Code: Main Program INPUT MC-loop True/Meas Estimate OUTPUT

Rickard Karlsson IEEE Aerospace Conf 2007 Code: Main Program INPUT MC-loop True/Meas Estimate OUTPUT

Rickard Karlsson IEEE Aerospace Conf 2007 Code: Input (from MATLAB) Just type f(x), h(x),… Nonlinear? Matrices!!

Rickard Karlsson IEEE Aerospace Conf 2007 Example 4: Positioning using IMU and GPS MPF part of next release

Rickard Karlsson IEEE Aerospace Conf 2007 Summary Rickard Karlsson Automatic Control Linköping University, SWEDEN Proposed KD as a performance measure General Filtering Software