© 2004 Goodrich, Tamassia Dictionaries1 6 9 2 4 1 8   

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Binary Search Trees
Advertisements

© 2004 Goodrich, Tamassia Hash Tables
The Dictionary ADT Definition A dictionary is an ordered or unordered list of key-element pairs, where keys are used to locate elements in the list. Example:
© 2004 Goodrich, Tamassia Hash Tables1  
© 2004 Goodrich, Tamassia Maps1. © 2004 Goodrich, Tamassia Maps2 A map models a searchable collection of key-value entries The main operations of a map.
Chapter 9: Maps, Dictionaries, Hashing Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
9.3 The Dictionary ADT    … 01/25/98, Taipei, … 03/04/98, Yunlin, … 02/15/98, Douliou, … 01/20/98,
Dictionaries1 © 2010 Goodrich, Tamassia m l h m l h m l.
Maps. Hash Tables. Dictionaries. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Data Structures Lecture 12 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
TTIT33 Algorithms and Optimization – Lecture 5 Algorithms Jan Maluszynski - HT TTIT33 – Algorithms and optimization Lecture 5 Algorithms ADT Map,
Data Structures Lecture 13 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Maps, Dictionaries, Hashtables
© 2004 Goodrich, Tamassia Dictionaries   
CSC311: Data Structures 1 Chapter 9: Maps and Dictionaries Objectives: Map ADT Hash tables –Hash functions and hash code –Compression functions and collisions.
Dictionaries and Hash Tables1  
© 2004 Goodrich, Tamassia Binary Search Trees   
© 2004 Goodrich, Tamassia Maps1. © 2004 Goodrich, Tamassia Maps2 A map models a searchable collection of key-value entries The main operations of a map.
CSC 212 – Data Structures Lecture 29: Dictionary ADT.
Binary Search Trees1 ADT for Map: Map stores elements (entries) so that they can be located quickly using keys. Each element (entry) is a key-value pair.
© 2004 Goodrich, Tamassia Priority Queues1. © 2004 Goodrich, Tamassia Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection.
Maps, Hash Tables and Dictionaries Chapter 10.1, 10.2, 10.3, 10.5.
Maps, Dictionaries, Hashing
CS 221 Analysis of Algorithms Data Structures Dictionaries, Hash Tables, Ordered Dictionary and Binary Search Trees.
CSC401 – Analysis of Algorithms Lecture Notes 6 Dictionaries and Search Trees Objectives: Introduce dictionaries and its diverse implementations Introduce.
Hash Tables1   © 2010 Goodrich, Tamassia.
LECTURE 36: DICTIONARY CSC 212 – Data Structures.
Maps and Dictionaries Data Structures and Algorithms CS 244 Brent M. Dingle, Ph.D. Department of Mathematics, Statistics, and Computer Science University.
© 2004 Goodrich, Tamassia Hash Tables1  
Hashing - 2 Designing Hash Tables Sections 5.3, 5.4, 5.4, 5.6.
CHAPTER 9 HASH TABLES, MAPS, AND SKIP LISTS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++,
Map ADT by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data Structures.
Maps & dictionaries Go&Ta A map models a searchable collection of key-value entries The main operations of a map are for searching, inserting,
CH 9 : MAPS AND DICTIONARIES 1 ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
Maps1 © 2010 Goodrich, Tamassia. Maps2  A map models a searchable collection of key-value entries  The main operations of a map are for searching, inserting,
CSC 212 Hash, Dictionaries, and Skip Lists. Announcements Homework #4 due Tuesday  Attending assessment conf. at UB tomorrow (Drew the short straw; New.
© 2004 Goodrich, Tamassia Maps1. © 2004 Goodrich, Tamassia Maps2 A map models a searchable collection of key-value entries The main operations of a map.
© 2004 Goodrich, Tamassia BINARY SEARCH TREES Binary Search Trees   
1 COMP9024: Data Structures and Algorithms Week Eight: Maps and Dictionaries Hui Wu Session 2, 2014
1 COMP9024: Data Structures and Algorithms Week Nine: Maps and Dictionaries Hui Wu Session 1, 2016
1 COMP9024: Data Structures and Algorithms Week Eight: Maps and Dictionaries Hui Wu Session 1, 2014
Lecture14: Hashing Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Maps Rem Collier Room A1.02 School of Computer Science and Informatics
COMP9024: Data Structures and Algorithms
Binary Search Trees < > = © 2010 Goodrich, Tamassia
Binary Search Trees < > =
Dictionaries Dictionaries 07/27/16 16:46 07/27/16 16:46 Hash Tables 
Dictionaries 9/14/ :35 AM Hash Tables   4
Hash Tables 3/25/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
COMP9024: Data Structures and Algorithms
Priority Queues © 2014 Goodrich, Tamassia, Goldwasser Priority Queues
Dictionaries < > = Dictionaries Dictionaries
Data Structures Maps and Hash.
Binary Search Trees < > = © 2010 Goodrich, Tamassia
Binary Search Trees < > =
Dictionaries and Hash Tables
Priority Queues 4/6/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Maps.
Dictionaries < > = /3/2018 8:58 AM Dictionaries
Ordered Maps & Dictionaries
Dictionaries < > = /9/2018 3:06 AM Dictionaries
Dictionaries and Hash Tables
Copyright © Aiman Hanna All rights reserved
Dictionaries 1/17/2019 7:55 AM Hash Tables   4
Dictionaries < > = /17/2019 4:20 PM Dictionaries
Hash Tables Computer Science and Engineering
CH 9 : Maps And Dictionary
CS210- Lecture 17 July 12, 2005 Agenda Collision Handling
Dictionaries < > = Dictionaries Dictionaries
Dictionaries and Hash Tables
Presentation transcript:

© 2004 Goodrich, Tamassia Dictionaries   

© 2004 Goodrich, Tamassia Dictionaries2 Dictionary ADT The dictionary ADT models a searchable collection of key- element entries The main operations of a dictionary are searching, inserting, and deleting items Multiple items with the same key are allowed Applications: word-definition pairs credit card authorizations DNS mapping of host names (e.g., datastructures.net) to internet IP addresses (e.g., ) Dictionary ADT methods: find(k): if the dictionary has an entry with key k, returns it, else, returns null findAll(k): returns an iterator of all entries with key k insert(k, o): inserts and returns the entry (k, o) remove(e): remove the entry e from the dictionary entries(): returns an iterator of the entries in the dictionary size(), isEmpty()

© 2004 Goodrich, Tamassia Dictionaries3 Example OperationOutputDictionary insert(5,A)(5,A)(5,A) insert(7,B)(7,B)(5,A),(7,B) insert(2,C)(2,C)(5,A),(7,B),(2,C) insert(8,D)(8,D)(5,A),(7,B),(2,C),(8,D) insert(2,E)(2,E)(5,A),(7,B),(2,C),(8,D),(2,E) find(7)(7,B)(5,A),(7,B),(2,C),(8,D),(2,E) find(4)null(5,A),(7,B),(2,C),(8,D),(2,E) find(2)(2,C)(5,A),(7,B),(2,C),(8,D),(2,E) findAll(2)(2,C),(2,E)(5,A),(7,B),(2,C),(8,D),(2,E) size()5(5,A),(7,B),(2,C),(8,D),(2,E) remove(find(5))(5,A)(7,B),(2,C),(8,D),(2,E) find(5)null(7,B),(2,C),(8,D),(2,E)

© 2004 Goodrich, Tamassia Dictionaries4 The findAll(k) Algorithm Algorithm findAll(k): Input: A key k Output: An iterator of entries with key equal to k Create an initially-empty list L B = D.entries() while B.hasNext() do e = B.next() if e.key() = k then L.insertLast(e) return L.elements()

© 2004 Goodrich, Tamassia Dictionaries5 The insert and remove Methods Algorithm insert(k,v): Input: A key k and value v Output: The entry (k,v) added to D Create a new entry e = (k,v) S.insertLast(e){S is unordered} return e Algorithm remove(e): Input: An entry e Output: The removed entry e or null if e was not in D {We don’t assume here that e stores its location in S} B = S.positions() while B.hasNext() do p = B.next() if p.element() = e then S.remove(p) return e return null {there is no entry e in D}

© 2004 Goodrich, Tamassia Dictionaries6 A List-Based Dictionary A log file or audit trail is a dictionary implemented by means of an unsorted sequence We store the items of the dictionary in a sequence (based on a doubly-linked list or array), in arbitrary order Performance: insert takes O(1) time since we can insert the new item at the beginning or at the end of the sequence find and remove take O(n) time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key The log file is effective only for dictionaries of small size or for dictionaries on which insertions are the most common operations, while searches and removals are rarely performed (e.g., historical record of logins to a workstation)

© 2004 Goodrich, Tamassia Dictionaries7 Hash Table Implementation We can also create a hash-table dictionary implementation. If we use separate chaining to handle collisions, then each operation can be delegated to a list-based dictionary stored at each hash table cell.