Ch 16: Electric Charge and Electric Field “Opposites attract” by Paula Abdul.

Slides:



Advertisements
Similar presentations
Electric Charge & Electric Field
Advertisements

Atoms are composed of Electrons – fundamental negatively charged (-) particle of matter (-1.6 x10-19C) 2. Protons – fundamental positively charged (+)
Electrostatics (Ch. 20).
Unit 14: Electrostatics.
Chapter 21. Electric Charge
Day 2 Electrical Charging & Coulomb’s Law. Objectives Charging by Conduction Charging by Induction Electroscopes Coulomb’s Law.
Static Electricity Chapter 19.
Static Electricity PSE Chapter 15 pg. 197 Textbook Chapter 32.
Static Electricity Hopefully you studied this link:
Electric Charges and Electric Fields
Electrostatics Deals with electric charges at rest, or static electricity on the surface of an object.
Chapter 21, Electric Charge, and electric Field. Charles Allison © Electric Charge, q or Q Charge comes in two types 1e = 1.6x Coulombs.
Unit 3 Electricity & Magnetism Electric Fields Physics 5e. Students know charged particles are sources of electric fields and are subject to the forces.
ELECTROSTATICS: The study of the behavior of stationary charges
Electricity and Simple Circuits
Static Electricity. Is all the charge the same or it is possible that there is more than one type?
Electric Charge and Electric Field Ch 16. Static Electicity Electricity comes from the Greek work elektron which means “amber”. Static Electricity = amber.
Chapter 1 Electric charge and electric forces Chapter 1.
AP Physics Summer Institute ELECTROSTATICS.
Topic 6: Fields and Forces Topic 6.2 Electric force and field.
Lecture 2 Properties of Electric Charges Insulators and Conductors Coulomb’s Law Electric Field Problem Solving Strategy.
ELECTRIC FORCES AND ELECTRIC FIELDS
Electrostatics. Electric Charge and Electric Field.
Electrostatics Properties of Electric Charges.
Chapter 23, part I 1. Electrical charge. 2. Coulomb’s Law about force between two point charges. 3. Application of Coulomb’s Law.
Chapter 16 Electric Forces and Electric Fields
Forces By the early 19th century, physicists had classified the apparent myriad of forces in nature to just 3 kinds: Gravitational force Electric force.
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism (Electrostatics) a. Electric Charge, Electric Field & Gauss’ Law.
Chapter 16 Electric Charge and Electric Field © 2008 Giancoli, PHYSICS,6/E © Electronically reproduced by permission of Pearson Education, Inc.,
Electric Charge and Electric Field 16
Introduction to Electrostatics Unit 14, Presentation 1.
Electric Forces and Electric Fields
Electricity Charge and Field Presentation 2003 R. McDermott.
Chapter 19 Electric Forces and Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative.
Electricity and Magnetism  Electric forces hold atoms and molecules together.  Electricity controls our thinking, feeling, muscles and metabolic processes.
Electrostatics Unit 11. Electric Charge Symbol: q Unit: Coulomb (C) Two kinds of Charge: Positive Negative Law of Electrostatics: Like charges REPEL-
The study of electrical charges at rest
Chapter 32 Electrostatics.
 To understand the basic properties of electric charge.  To describe the difference between conductors and insulators.  To calculate the electric force.
What Do All These Pictures Have In Common?
My Chapter 16 Lecture Outline.
Electric Charge and Electric Field
Some Thought Questions: Why do some TVs build up so much dust very quickly? Why does saran wrap stick to your bowl when it is just plastic and nothing.
Electric Fields and Forces AP Physics B. Electric Charge “Charge” is a property of subatomic particles. Facts about charge:
Electric Field Physics Overview Properties of Electric Charges Charging Objects by Induction Coulomb’s Law The Electric Field Electric Field Lines.
Electrostatics The study of electric charges Introduction Did you ever run a comb through your hair? What do you notice. What causes the paper holes.
Electricity Section 1: Electric Charge and Static Electricity.
Static Electricity Chapter 16 and 24. Review: The 4 Fundamental Forces Strong Force – The force that is involved in holding the nucleus of an atom together.
What Gives an Electric Charge? An imbalance of protons and electrons. An imbalance of protons and electrons. Neutral objects have equal numbers of electrons.
S-113 Define these terms A.Charge B.Potential Difference (Voltage) C.Current (Amps) D.Resistance.
Electric Charge and Electric Field
Electrostatics.  Electrostatics is electricity at rest  It involves electric charges, the forces between them, and their behavior in material  An understanding.
Chapter 16 Electric Charge and Electric Field © 2002, B.J. Lieb Giancoli, PHYSICS,5/E © Electronically reproduced by permission of Pearson Education,
Pick up a copy of the notes from the front Think about this question and be ready to answer if called on… – How are gravity and electrostatic force similar?
Electric Fields Review of gravitation Review of gravitation Gravitational field strength g gives the ratio of force to mass. Gravitational field strength.
 Electrostatics, the study of electric charges  The evidence of electricity has been noted since 2700 BC  Lets review some basics:  Like charges repel.
Electric Charge and Electric Force. Matter is made up of atoms. Atoms are made up of  Electrons  Protons  Neutrons.
Electric charge Symbol q It’s known since ancient time that if amber is rubbed on cloth, it can attract light objects, i.e. feather. This phenomenon is.
Chapter 16 Electric Charge and Electric Field. Units of Chapter 16 Static Electricity; Electric Charge and Its Conservation Electric Charge in the Atom.
 Effect static electricity charging  Protons (p + ) › in nucleus (center) of an atom › positively charged  Neutrons (n 0 ) › in nucleus (center) of.
Static Electricity. All objects contain electrical charges. These charges come from three subatomic particles: ProtonsElectronsNeutrons.
Bell Ringer Using only the PVC, move the soda can, but you cannot touch the can with the PVC or blow on the can. Explain how you did it.
Static Electricity, Electric Forces, Electric Fields.
Static Electricity What are the fundamental particles and how do they interact?
Electrostatics Deals with electric charges at rest, or static electricity on the surface of an object.
Chapter 17: Electrostatics
Electric Forces and Fields Pgs
Electricity! Part I: electric charge
Electrostatics.
Charge & Coulomb’s Law
Presentation transcript:

Ch 16: Electric Charge and Electric Field “Opposites attract” by Paula Abdul

Static Electricity  A neutral object rubbed with another object can acquire a “charge” due to friction. It is said to posses a net electric charge.  There are two types of electric charge. Each type tends to repel the same type, but attract the opposite type. These are referred to as positive and negative by Benjamin Franklin ( ).

Charge Conservation  Franklin argued that whenever a certain amount of charge is acquired by a body in a process, and equal amount of charge is given up by the other body. The net change produced is algebraically the sum of the positive and negatives and equals zero. This is the Law of Conservation of Charge.  No violations of this law have ever been found.

It all starts with the atom  Today’s view of the atom shows it with a heavy positively charged nucleus surrounded by one or more negatively charged electrons.  The nucleus contains positive protons and neutral neutrons. This accounts for over 99% of the atom’s mass.  The negatively charged electrons around the outside of the nucleus have the same magnitude of charge as the protons. 1+ = 1-

Electric Charge in the Atom  Neutral atoms contain = numbers of protons and electrons.  An ion is an atom that has gained or lost 1 or more electrons and has a net positive or negative charge.  A polar object is one that is neutral, but the charge is not distributed uniformly. Water is a “polar” molecule (neutral, but acts as if it is charged).

Can you fix the leak?  Charged objects caused by friction normally hold their charge for a short period of time and return to their normal state.  Charged objects can be neutralized by ions in the air upon collisions with cosmic rays reaching Earth from space.  More often, charge can “leak off” onto water molecules in the air due to the polarity of water.  On dry days, static electricity is more noticeable, but on humid days it is difficult to maintain a charge for long.

Insulators and Conductors  Conductors are materials that carry electric charge easily. Many times these are metals.  Insulators are materials that do NOT carry electric charge easily. Wood, rubber, glass, air, plastic, and non metals are insulators.  Why? It is believed that good conductors have a large source of loosely bound electrons around the nuclei (such as metals) and insulators have tightly bound electrons. Semiconductors have very few free electrons.

Induced charge  Another way to acquire a charge on an object is to bring a charged object “near” another object. The presence of the charge causes electrons in the second object to “rearrange” themselves leaving one end more positive or negative than the other.  The induced object is still neutral, but ACTS as if it is charged (like polar molecules).

Natural Phenomena Lightning is a natural display of static electricity. The clouds acquire charge by winds causing friction and charge there induces an opposite charge in the ground. When the difference is great enough… KABOOM! DISCHARGE!

The electroscope  How can you tell if an object has a charge? A tool called the Electroscope is used to detect charge. It is not possible to determine the charge (positive or negative) of the leaves without knowing the charge of the object. The leaves will behave the same whether touched by a positive or a negative rod.

Methods of Charge transfer  Charging by Induction- bring a charge object “near”.  Charging by Conduction- touch a charged object to another object.  What charge is acquired in each case? How long does it last?

Force of charge  French physicist Charles Coulomb ( ) investigated electric forces in the 1780s using a torsion balance. This tool helped him come to the conclusion that charges exerted forces on each other directly proportional to the charges of each object and inversely proportional to the square of the distance between their centers.

Coulomb’s Law  The relationship between charge quantity, Q, and distance, r, is summed up in Coulomb’s Law:  F is the force between the charged objects, which can be attractive or repulsive.  Q is the quantity of charge in Coulombs, r is distance between charged bodies (center), and k is a proportionality constant = 9.0 x 10 9 N-m 2 /C 2

Units of Charge  Charge is measured in units of Coulombs, C, after the inventor of Coulomb’s Law.  1C is the amount of charge which, if placed on each of 2 point objects 1 m apart, will result in each object exerting a force of 9.0 x 10 9 N on the other.  This would be enormous force (almost 1 trillion tons) so we don’t deal with charges this large ordinarily. We deal with charges along the microcoulomb level or smaller.  1 electron has a charge of x C and its sign is negative. This is the smallest charge known. (elementary charge) so charge on electron is –e and on proton is +e.

Quantized charge  Electric charge must be quantized or exist in integral multiples of a single charge. (1e, 2e, 3e,…)  Since force is a vector, the magnitude between 2 charged objects is given by the formula. The direction of the force is always in a line between the 2 objects. If both objects have negative charge, the force is repulsive. If one object is positive and the other negative, the force is attractive.  Remember forces follow Newton’s 3 rd law even when dealing with charged objects.

Point charges  Coulomb’s Law equation applies as long as the “object” is much smaller than the distance between them. For this we treat objects as “point charges” where spatial size is negligible.  For finite sized objects it is challenging to determine the exact distance between them since sometimes charge might not be distributed uniformly.  The constant k is often written in terms of another constant,  Called the permittivity of free space.  Coulomb’s law also applies to charges “at rest” as studied in electrostatics.

Example 16-1  Determine the magnitude of the electric force on the electron of a hydrogen atom exerted by the single proton (Q 2 =+e) that is its nucleus. Assume the electron “orbits” the proton at its average distance of r = 0.53x m. + - r Q2Q2 Q1Q1

16-1 Solution The direction of the force on the electron is toward the proton, since the charges have opposite signs and the force is attractive.

Coulomb’s Law & Vectors  When several forces act on an object, the net force is the vector sum of the forces.  Electrostatic forces are governed by the same laws.  Given 2 forces acting on a body, we can use tail-to-tip or parallelogram method to find the resultant.  Calculating the magnitude and direction of the resultant sum is better accomplished using vector components.  Recall F 1x = F 1 cos θ 1 and F 1y = F 1 sinθ 1 and we use tan -1 to find the angle once we have resultant components.  See chs 3 & 4 for more detail.

Electric field  Unlike contact forces, electric and gravitational forces act at a distance.  An electric field extends outward into space around every charge.  Lines drawn around a charge indicate the strength of the electric field and the direction a “positive test charge” would go if placed within that field. The electric field, E, at a given point in space will apply a force on a charge, q, such that F =q E. If q is +, then F and E will point in the same direction. If q is -, then F and E will point in opposite directions.

Electric Field lines  Lines near the charge, where the force is the greatest, are closer together.  The closer the lines are, the stronger the field is in that region.  Look at figure on pg 491.  The number of lines drawn is proportional to the magnitude of charge, Q.  Between parallel plates oppositely charged, the strength of the electric field has the same magnitude at all points so E=constant.  Lines start on positive and end on negative charges.

Your turn to Practice  Please do Ch 16 Review pg 497 #s 1-9  Please do Ch 16 Rev p 498 #s 12, 22, 24, and 27.