Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,

Slides:



Advertisements
Similar presentations
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Advertisements

Flavor Violation in SUSY SEESAW models 8th International Workshop on Tau-Lepton Physics Tau04 Junji Hisano (ICRR, U of Tokyo)
SUSY can affect scattering Parity-Violating electron scattering “Weak Charge” ~ sin 2  W ~ 0.1.
26th Rencontres de Blois, Particle Physics and Cosmology, 2014 BSM Higgs Searches at the LHC C. H. Shepherd-Themistocleous PPD, Rutherford Appleton Laboratory.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Baryogenesis and Higgs Phenomenology V. CiriglianoLANL C. LeeLBL S. TulinCaltech S. ProfumoUC Santa Cruz G. ShaugnessyWisconsin PRD 71: (2005) PRD.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
3.Phenomenology of Two Higgs Doublet Models. Charged Higgs Bosons.
Beyond MSSM Baryogenesis Kfir Blum and Yosef Nir, Phys.Rev.D78:035005,2008.
Electroweak Phase Transition, Scalar Dark Matter, & the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC.
Scalar Dark Matter and the Higgs Portal M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
K. Kumar, W. Marciano, Y. Li Electroweak physics at EIC - Summary of week 7 INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider.
Nuclei as Laboratories: Nuclear Tests of Fundamental Symmetries M.J. Ramsey-Musolf N. Bell V. Cirigliano J. Erler B. Holstein A. Kurylov C. Lee C. Maekawa.
Electroweak Baryogenesis: Electric dipole moments, the LHC, and the sign of the baryon asymmetry Sean Tulin (Caltech) Collaborators: Daniel Chung Bjorn.
Lausanne 02/03/2001 A.Jacholkowska1 Supersymmetric Higgs(es) in LHC(b) Agnieszka Jacholkowska 2 nd Generator Workshop Lausanne 02/03/2001.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Electric Dipole Moment Goals and “New Physics” William J. Marciano 12/7/09 d p with e-cm sensitivity! Why is it important?
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Nuclear Physics and the New Standard Model M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear,
Minimal Electroweak Scale Cosmology and the LHC M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical.
Tension Between A Fourth Generation And The LHC Higgs Searches Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
1 Electroweak Baryogenesis and LC Yasuhiro Okada (KEK) 8 th ACFA LC workshop July 12, 2005, Daegu, Korea.
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
Flavour and CP Violation in Supersymmetric Models John Ellis Theory Division, LHCb, Jan. 27 th, 2009.
H125 & Natural Alignment in the Z3 NMSSM Nausheen R. Shah University of Michigan Aug 7, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
QED at Finite Temperature and Constant Magnetic Field: The Standard Model of Electroweak Interaction at Finite Temperature and Strong Magnetic Field Neda.
Pamela Ferrari0 0 Recontres de Moriond ‘05 QCD and Hadronic interactions QCD and Hadronic interactions Recontres de Moriond-La Thuille March 2005.
ILC Physics a theorist’s perspective Koji TSUMURA (Kyoto from Dec 1 st ) Toku-sui annual workshop 2013 KEK, Dec , 2013.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
Electric Dipole Moments, the LHC, and the Origin of Matter M.J. Ramsey-Musolf Wisconsin-Madison NPAC.
Nuclear Theory & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade Michael Ramsey-Musolf, Newport News 2007 Fifty years of.
Baryogenesis and the New Cosmology Mark Trodden Syracuse University COSMO-02 Adler Planetarium, Chicago 9/18/2002.
Chiral Symmetries and Low Energy Searches for New Physics M.J. Ramsey-Musolf Caltech Wisconsin-Madison.
Nuclear Science & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade Michael Ramsey-Musolf, INPC 2007 Fifty years of PV in nuclear.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
The Search For Supersymmetry Liam Malone and Matthew French.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Why is there something rather than nothing
SUSY Baryogenesis, EDMs, & Dark Matter: A Systematic Approach M.J. Ramsey-Musolf V. CiriglianoCaltech C. LeeINT S. TulinCaltech S. ProfumoCaltech PRD 71:
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Durmu ş Ali Demir İ zmir Institute of Technology Reasons for … Results from … Extra U(1) in SUSY.
EDMs in the SUSY GUTs Junji Hisano (ICRR, Univ. of Tokyo) NuFact04 6th International Workshop on Neutrino Factories and Superbeams, Osaka University, Japan.
THE CONNECTION BETWEEN NEUTRINO EXPERIMENTS AND LEPTOGENESIS Alicia Broncano Berrocal MPI.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Global Analysis, Combination & Complementarity The vision: explore 10 TeV scale directly (100 TeV pp) + indirectly (e + e - )
We have the Higgs!!! Now What?? Nausheen R. Shah Wayne State University Oct 14, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.xxxxx.
新学術領域研究 先端加速器LHCが切り拓くテラスケールの素粒子物理学 ~真空と時空への新たな挑戦~ 研究会 2013年5月23日〜25日
Leptogenesis beyond the limit of hierarchical heavy neutrino masses
Lecture V: Electric Dipole Moments and the Baryon Asymmetry
TeV-Scale Leptogenesis and the LHC
Complementarity between FCC-ee and FCC-hh Searches for BSM Physics
Archil Kobakhidze AK, Lei Wu, Jason Yue, JHEP 1604 (2016) 011
Working group report -- cosmology
Cosmology study at CEPC/SppC on behalf of the TeV cosmology working group Bi Xiao-Jun (IHEP)
Electroweak Baryogenesis and LC
Baryogenesis at Electroweak scale
New aspects of leptogenesis
New Physics from Higgs self-coupling measurement
Presentation transcript:

Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology FNAL Seminar, Oct 2008

What is the origin of baryonic matter ? Cosmic Energy Budget Baryons Dark Matter Dark Energy Explaining non-zero  B requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set  B =0) What are the implications of Higgs searches at LHC and Higgs studies at ILC for explaining the baryon asymmetry ? What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ? Leptogenesis: discover the ingredients: LN- & CP- violation in neutrinos Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches D. ChungWisconsin V. CiriglianoLANL B. GarbrechtWisconsin C. LeeLBL Y. LiWisconsin S. ProfumoUC Santa Cruz S. TulinCaltech G. ShaugnessyWisconsin PRD 71: (2005) PRD 73: (2006) JHEP 0607:002 (2006 ) JHEP 0807:010 (2007) ArXiv /hep-ph ArXiv /hep-ph Baryogenesis & EDMsHiggs Phenomenology PRD 75: (2007) PRD 77: (2008) V. BargerWisconsin P. LangackerIAS M. McCaskeyWisconsin D. O’Connell IAS G. ShaugnessyWisconsin M. WiseCaltech

Baryogenesis: Myths EW baryogenesis requires a light SUSY Higgs boson (m H < 120 GeV) EW baryogenesis requires SUSY with a light RH stop EDMs have nearly killed EW baryogenesis Leptogenesis is the most viable option

Outline I.Baryogenesis: General Features II.Computing Y B systematically: progress & challenges III.Illustrative phenomenology in MSSM: EDMs, Colliders, & DM IV.Probing EW phase transition w/ Higgs boson phenomenology

Baryogenesis: Ingredients Anomalous B-violating processesPrevent washout by inverse processes Sakharov Criteria B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967

EW Baryogenesis: Standard Model Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Anomalous Processes Different vacua:  (B+L)=  N CS Kuzmin, Rubakov, Shaposhnikov McLerran,… Sphaleron Transitions

EW Baryogenesis: Standard Model Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Increasing m h 1st order2nd order CP-violation too weak EWPT too weak Shaposhnikov

Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? Quantum Transport CPV Chem Eq R-M et al Is it viable? Can experiment constrain it? How reliably can we compute it? Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD Systematic baryogenesis: SD equations + power counting V eff ( ,T): Requirements on Higgs sector extensions & expt’l probes

EDMs: New CPV? SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? CKM

EWSB: Higgs? SM “background” well below new CPV expectations New expts: 10 2 to 10 3 more sensitive CPV needed for BAU? LEPEWWG LEP Exclusion Non-SM Higgs(es) ? EW Precision Data: 95% CL (our fit-GAPP)

Baryogenesis: EDMs & Colliders Cosmology LHC EDMs Theory

Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? 90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD “Gentle” departure from equilibrium & scale hierarchy Cirigliano, Lee, R-M,Tulin

Systematic Baryogenesis Goal: Derive dependence of Y B on parameters L new systematically (controlled approximations) Parameters in L new Bubble & PT dynamics CPV phases Departure from equilibrium Earliest work: QM scattering & stat mech New developments: non-equilibrium QFT

Quantum Transport & Baryogenesis Particle Propagation: Beyond familiar (Peskin) QFT LILI Assumptions: 1.Evolution is adiabatic 2.Spectrum is non-degenerate 3.Density is zero Electroweak Baryogenesis 1.Evolution is non-adiabatic: v wall > 0 -> decoherence 2.Spectrum is degenerate: T > 0 -> Quasiparticles mix 3.Density is non-zero

Quantum Transport & Baryogenesis Electroweak Baryogenesis 1.Evolution is non-adiabatic: v wall > 0 -> decoherence 2.Spectrum is degenerate: T > 0 -> Quasiparticles mix 3.Density is non-zero Scale Hierarchy: Fast, but not too fast Hot, but not too hot Dense, but not too dense  d =  v w (k /  << 1  p =  p /  << 1   =  / T << 1 Work to lowest, non- trivial order in  ’s Error is O (  ) ~ 0.1 Cirigliano, Lee, R-M Systematically derive transport eq’s from L new Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M

Quantum Transport Equations =+ + … + Expand in  d,p,  Currents CP violating sources Links CP violation in Higgs and baryon sectors Chiral Relaxation Strong sphalerons Producing n L = 0 S CPV  M,  H,  Y,  SS Approximations Neglect O (   ) terms Others under scrutiny R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano From S-D Equations: S CPV  M,  H,  Y … Riotto, Carena et al, R-M et al, Konstandin et al R-M et al Objectives: Determine param dep of S CPV and all  s and not just that of S CPV Develop general methods for any model with new CPV Quantify theor uncertainties  Y >> other rates? (No) Majorana fermions ? (densities decouple) Particle-sparticle eq? Density indep thermal widths?

Illustrative Study: MSSM Neutralino Mass Matrix M1M1 -- M2M2 -m Z cos  sin  W m Z cos  cos  W m Z sin  sin  W -m Z sin  sin  W - -m Z cos  sin  W m Z cos  cos  W m Z sin  sin  W -m Z sin  sin  W M N = Chargino Mass Matrix M2M2  M C = T << T EW : mixing of H,W to     ~~ ~~ T ~T EW : scattering of H,W from background field ~~ T ~ T EW CPV Resonant CPV: M 1,2 ~ 

Baryon Number: MSSM HiggsinosSquarks Impt to compute both num and den consistently

Resonant CPV & Relaxation Huet & Nelson CP violationRelaxation

Baryon Number &  Y Cirigliano, Lee, R-M, Tulin g H tLtL tLtL tRtR Joyce, Prokopec, Turok our  Y previous  Y 

Baryogenesis: tan  effects Transport, Spectrum, & EDMs Small tan  negligible Y b,  effects tan  =20: impt Y b,  effects Canceling t,b (s)quark contributions Enhanced light stau contributions Small tan  : n left =5Q+4T + SUSY Chung,Garbrecht, R-M, Tulin:

Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? 90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD Elementary particle EDMs: N>>1 Engel,Flambaum, Haxton, Henley, Khriplovich,Liu, R-M Many-body EDMs:

EDMs: Complementary Searches Electron Improvements of 10 2 to 10 3 Neutron Neutral Atoms Deuteron QCD

EDMs: Theory Electron Improvements of 10 2 to 10 3 Neutron Neutral Atoms Deuteron QCD Nuclear Schiff Moment Nuclear EDM: Screened in atoms Neutron EDM from LQCD: Two approaches: Expand in  & average over topological sectors (Blum et al, Shintani et al) Compute  E for spin up/down nucleon in background E field (Shintani et al) m N =2.2 GeV QCD SR (Pospelov et al) Hadronic couplings Pospelov et al: PCAC + had models & QCD SR ChPT for d n : van Kolck et al Schiff Screening Atomic effect from nuclear finite size: Schiff moment

EDMs & Schiff Moments One-loop EDM: q, l, n…Chromo-EDM: q, n… Dominant in nuclei & atoms Engel & de Jesus: Reduced isoscalar sensitivity (  QCD ) Schiff Moment in 199 Hg Nuclear & hadron structure ! Liu et al: New formulation of Schiff operator + … New nuclear calc’s needed !

One Loop EDMs & Baryogenesis T ~ T EW Resonant Non-resonant Cirigliano, Lee, Tulin, R-M Future d e d n d A

EDMs in SUSY One-loop EDM: q, l, n…Chromo-EDM: q, n… Dominant in nuclei & atoms

EDMs in SUSY One-loop EDM: q, l, n…Chromo-EDM: q, n… Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDMWeinberg: small matrix el’s Decouple in largelimit

EDM constraints & SUSY CPV AMSB: M 1 ~ 3M 2 BaryogenesisLEP II ExclusionTwo loop d e Cirigliano, Profumo, R-M SUGRA: M 2 ~ 2M 1 | sin   | > 0.02 | d e, d n | > e-cm M   < 1 TeV

Baryogenesis: EDMs & Colliders baryogenesis Present d e LEP II excl LHC reach Prospective d n Cirigliano, Profumo, R-M

Dark Matter: Future Experiments Cirigliano, Profumo, R-M Assumes    CDM

EDMs in SUSY: Full Two-Loop Higgs Boson Masses Li, Profumo, R-M: WH Loops dominate for neutron & comparable to  H,  A for electron m A =300 GeV,  =300 GeV, M 2 =2M 1 =290 GeV

EDMs in SUSY: Full Two-Loop Higgs Boson Masses Stronger limits on  CPV for light Higgses & large tan 

Baryogenesis: EDMs & Colliders Higgs Boson Masses Stronger limits on  CPV for light Higgses & large tan  Examples w/ tan  =20, m stop = 150 GeV: m A =1 TeV, sin   =0.2; m A =1 TeV, sin   =0.05 RH sbottom and stau masses correlated

Baryogenesis: EDMs & Colliders Higgsino & Gaugino Mases Larger m A : EDM contours & EWB regions contract

Baryogenesis: EDMs & Colliders Arg(  M 1 b * ) = Arg(  M 2 b * ) / Weak dependence of d e, d n on Arg(  M 1 b * ) Res   EWB not compatible with d n Res & non-res   EWB compatible with future d n, light m A, & moderate tan 

Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis B violation C & CP violation Nonequilibrium dynamics Sakharov, 1967 Unbroken phase Broken phase CP Violation Topological transitions 1st order phase transition Is it viable? Can experiment constrain it? How reliably can we compute it? 90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD More Higgs? Ando,Barger, Langacker, McCaskey,O.Connell, Profumo, R-M, Shaugnessy, Tulin, Wise

Electroweak Phase Transition & Higgs 1st order2nd order LEP EWWG Increasing m h m h >114.4 GeV or ~ 90 GeV (SUSY) Computed E SM : m H < 40 GeV Need So that  sphaleron is not too fast E MSSM ~ 10 E SM : m H < 120 GeV Stop loops in V Eff Light RH stop w/ special

Electroweak Phase Transition & Higgs Increasing m H 1st order2nd order LEP EWWG m h >114.4 GeV or ~ 90 GeV (SUSY) Computed E SM : m H < 40 GeV Need So that  sphaleron is not too fast Non-doublet Higgs (w / wo SUSY) MixingDecay sin 2  Can an augmented Higgs sector Generate a strong 1 st order EWPT ? Allow for a heavier SM-like Higgs than in the MSSM ? Alleviate the tension between direct Higgs search bounds and the EWPO ? Be discovered at the LHC ? Can its necessary characteristic probed at the LHC and a future e + e - collider ?

Electroweak Phase Transition & Higgs Increasing m H 1st order2nd order LEP EWWG m h >114.4 GeV or ~ 90 GeV (SUSY) Computed E SM : m H < 40 GeV Need So that  sphaleron is not too fast Non-doublet Higgs (w / wo SUSY) MixingDecay B.R. reduction Reduced SM Higgs branching ratios Unusual final states mHmH O’Connell, R-M, Wise

The Simplest Extension Model Independent Parameters: v 0, x 0, 0, a 1, a 2, b 3, b 4 H-S MixingH 1 -> H 2 H 2 Simplest extension of the SM scalar sector: add one real scalar S Goal: identify generic features of models with extended scalar sectors that give a strong, 1 st order EWPT Determine low-energy phenomenology (Higgs studies, precision ewk) Address CPV with a different mechanism

The Simplest Extension, Cont’d Mass matrix Stable S (dark matter?) Tree-level Z 2 symmetry: a 1 =b 3 =0 to prevent s-h mixing and one-loop s hh x 0 =0 to prevent h-s mixing

Finite Temperature Potential What is the pattern of symmetry breaking ? What are conditions on the couplings in V(H,S) so that /T > 1 at T C ? Cylindrical Co-ordinates Compute V eff (  T ) Minimize w.r.t  Find T C Evaluate v(T C )/T C ~ cos  (T C )  (T C )/T C

Finite Temperature Potential Potential Conditions Analytic Numerical

Electroweak Symmetry Breaking Strong first order EWPT Potential parameters Small  c limit Increase  Large e < 0 Reduce Nonzero V 0

Electroweak Symmetry Breaking Strong first order EWPT a 1 <0, a 2 either sign a 1 =b 3 = 0, a 2 < 0 x 0 > 0 occurs readily Light: all models Black: LEP allowed

Phenomenology Colliders EWPO: favors light SM-like scalar EWPO compatible m 2 > 2 m 1 m 1 > 2 m 2 LHC exotic final states: 4b-jets,  + 2 b-jets… LHC: reduced BR(h SM) ILC: H’strahlung

Phenomenology Colliders Z 2 Symmetry m 1 > 2 m 2 LHC: reduced BR(h SM) Small  :

Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy Key features for EWPT & DM: (1)Softly broken global U(1) (2)Closes under renormalization (3)SSB leading to two fields: S that mixes w/ h and A is stable (DM) In progress… Controls  CDM & EWPT No domain walls DM mass

Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy  2 controls  CDM & EWPT In progress…

Summary EW baryogenesis remains a viable and testable mechanism for producing the observed baryon asymmetry Extensions of the Higgs sector of the SM can readily yield a strong 1 st order EWPT, and these extensions can be probed at LHC and ILC We’ve made progress in computing Y B systematically, but challenges remain: no one’s (yet) perfect ! EDM searches provide our most powerful probe of new EW CPV needed for Y B

Back Matter

Baryogenesis Scenarios Beyond the SMSM symmetry (broken) Electroweak symmetry breaking: Higgs ? Cosmic Energy Budget ? Baryogenesis: When? CPV? SUSY? Neutrinos? Leptogenesis: discover the ingredients: LN- & CP- violation in neutrinos Baryogenesis: Sakharov Baryon number violation C & CP Violation Departure from equilibrium Weak scale baryogenesis: test experimentally: EDMs & Higgs boson studies

Baryogenesis: EDMs & Transport Higgs Boson Masses Stronger limits on  CPV for light Higgses & large tan 

Dark Matter: Neutrinos in the Sun SUGRA: M 2 ~ 2M 1 AMSB: M 1 ~ 3M 2 Neutralino-driven baryogenesis

Dark Matter: Relic Abundance SUGRA: M 2 ~ 2M 1 AMSB: M 1 ~ 3M 2 LEP II Exclusion suppressed too fast Neutralino-driven baryogenesis Non-thermal  

Phenomenology: EWPO Electroweak Precision Observables (EWPO) Oblique parameters Similar for S,U… SM: global fit favors light scalar (m h ~ 85 GeV)

Phenomenology: EWPO cont’d Electroweak Precision Observables (EWPO) Oblique parameters Global fit (GAPP) Fix m H =114 GeV & fit S,T,U Require O(m 1, m 2, sin  ) - O SM to lie inside 95% CL ellipse

Quantum Transport Equations =+ + … + Expand in  d,p,  Currents CP violating sources Links CP violation in Higgs and baryon sectors Chiral Relaxation Strong sphalerons Producing n L = 0 S CPV  M,  H,  Y,  SS Approximations Neglect O (   ) terms Others under scrutiny R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano From S-D Equations: S CPV  M,  H,  Y … Riotto, Carena et al, R-M et al, Konstandin et al R-M et al Objectives: Determine param dep of S CPV and all  s and not just that of S CPV Develop general methods for any model with new CPV Quantify theor uncertainties  Y >> other rates? (No) Majorana fermions ? (densities decouple) Particle-sparticle eq? Density indep thermal widths?

SUSY Baryogenesis & Colliders Prospective d e Present d e Prospective d e LHC reach Present d e Prospective d e LHC reach ILC reach

LHC Phenomenology Discovery Potential Barger, Langacker, McCaskey, R-M, Shaughnessy CMS 30 fb -1 LHC Higgs Searches CMS & ATLAS: gg H, H  H ZZ llll  H WW l  l CMS : WW H, H  H  l + j H WW l  jj ATLAS : gg H, H ZZ ll  Higgstrahlung

LHC Phenomenology Discovery Potential  SM-like Singlet-like ~ EWB Viable Barger, Langacker, McCaskey, R-M, Shaughnessy SM-like SM-like w/ H 2 ->H 1 H 1 or Singlet-like CMS 30 fb -1 Could discovery heavy H 2

LHC Phenomenology, cont’d Determining  Barger, Langacker, McKaskey, R- M, Shaughnessy SM-like SM-like w/ H 2 !H 1 H 1 or Singlet-like ~ EWB Viable Enhanced g HVV coupling needed for 5  observation

ILC Phenomenology Colliders: e + e - Z * h (also WWF, ZZF) sin 2 

Scalar Sector & the EWPT Simple extensions of the SM scalar sector (xSM) w/ small number of d.o.f. can readily lead to a strong, 1st order EWPT as needed for EW baryogenesis EWPT viable xSM can allow for heavier SM- like Higgs consistent with EWPO EWPT xSM can readily probed at the LHC and ILC using Higgs boson searches One can obtain an analytic criteria for parameters of xSM needed for 1st order EWPT that provides guidance for specific model realizations No need for light RH stop

Symmetry Breaking Two Cases for at high T: V min = 0 V min = V 0 < 0

Electroweak Symmetry Breaking Critical Temperature LEP allowed models: T C ~ 100 GeV |V 0 | / T C 4 << 1

Extending the Higgs Sector GUTs: SU(5) example + L soft SUSY Beyond the MSSM       Fileviez Perez, Patel, R-M Ando, Barger, Langacker, Profumo, R-M, Shaugnessy, Tulin

SUSY Baryogenesis & Colliders Prospective d e Present d e Prospective d e LHC reach Present d e Prospective d e LHC reach ILC reach

EDM constraints & SUSY CPV One-loop d e & slepton mass Heavier sleptons: weaker one-loop EDM constraints & less resonant baryogenesis BBN

EDM constraints & SUSY CPV One-loop vs. Two-loop EDMs d e 1 loop ~ d e 2 loop

EDM constraints & SUSY CPV AMSB: M 1 ~ 3M 2 Neutralino-driven baryogenesis BaryogenesisLEP II ExclusionTwo loop d e Cirigliano, Profumo, R-M SUGRA: M 2 ~ 2M 1

Extending the Higgs Sector: GUTs Implications Strong 1st order EWPT w/o SUSY ? New sources of CPV? Light triplet Higgs Light leptoquarks (unification) Perez, Patel, R-M SU(5) w/ extended Higgs sector      

One-loop & Finite T Contributions Cylindrical Co-ordinates Coleman-Weinberg One-loop finite T Ring sum & plasma screening No screening for transverse W, Z masses: (M W,Z ) T ~  cos 

What is the origin of baryonic matter ? Cosmic Energy Budget Baryons Dark Matter Dark Energy gg fusion at LHC Higgsstrahlung at a linear collider T-odd, CP-odd by CPT theorem Explaining non-zero  B requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set  B =0) What are the implications of Higgs searches at LHC and Higgs studies at ILC for explaining the baryon asymmetry ? What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ?

Can an augmented Higgs sector Generate a strong 1 st order EWPT ? Allow for a heavier SM-like Higgs than in the MSSM ? Alleviate the tension between direct Higgs search bounds and the EWPO ? Be discovered at the LHC ? Can its necessary characteristic probed at the LHC and a future e + e - collider ? Can an augmented Higgs sector Generate a strong 1 st order EWPT ? Allow for a heavier SM-like Higgs than in the MSSM ? Alleviate the tension between direct Higgs search bounds and the EWPO ? Be discovered at the LHC ? Can its necessary characteristic probed at the LHC and a future e + e - collider ?

Cosmic Energy Budget  Y !1? (No) Majorana fermions ? (densities decouple) Particle-sparticle eq? Density indep thermal widths? From S-D Equations: S CPV  M,  H,  Y Numerical work:  SS Riotto, Carena et al, Lee et al, Konstandin et al Lee et al gg fusion at LHC Fix m H & fit S,T,U Require O(m 1, m 2, sin  ) - O SM to lie inside 95% CL ellipse