ATOMIC DATA AND STARK BROADENING OF CuI AND AgI SPECTRAL LINES: SELECTION AND ANALYSIS Radio Physics Faculty of Taras Schevchenko National University of.

Slides:



Advertisements
Similar presentations
Astronomy Notes to Accompany the Text Astronomy Today, Chaisson, McMillan Jim Mims.
Advertisements

EXPERIMENTAL CHARACTERISATION OF THE HIGH-PRESSURE METAL-HALIDE Na-Sc-Hg DISCHARGE Z. Miokovic 1 and D. Veza Physics Department, Faculty of Science, Uni-Zagreb,
Stimulated emissionSpontaneous emission Light Amplification by Stimulated Emission of Radiation.
SPECTROSCOPY PECULIARITIES OF THERMAL ELECTRIC ARC DISCHARGE PLASMA BETWEEN COMPOSITE ELECTRODES Ag-SnO 2 -ZnO Radio Physics Faculty of Taras Schevchenko.
OPOLEOpole University Institute of Physics, Plasma Spectroscopy Group I am from.. 1.
ION BROADENING OF SODIUM nS - 3P TRANSITIONS Z. Miokovic 1 and D. Veza Physics Department, Faculty of Science, Uni-Zagreb, Bijenicka 32, HR Zagreb,
Natural Broadening From Heisenberg's uncertainty principle: The electron in an excited state is only there for a short time, so its energy cannot have.
Atomic Emission Spectroscopy
Lecture 6.1 Lecture 6.1 ADVANCED PLASMA DIAGNOSTICTECHNIQUES Fri 23 May 2008, 1 pm LT5 Presented by Dr Ian Falconer Room.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Spectrum from a Prism. Example of a Spectrum Kirchoff’s Laws.
Physics 681: Solar Physics and Instrumentation – Lecture 10 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
CHEM 515 Spectroscopy Lecture # 1.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
LESSON 4 METO 621. The extinction law Consider a small element of an absorbing medium, ds, within the total medium s.
M.D. Seliverstov February 2013 CERN 1st LA³NET Topical Workshop on Laser Based Particle Sources
Spectroscopy and Atomic Structure.
Chapter 4 Spectroscopy Chapter 4 opener. Spectroscopy is a powerful observational technique enabling scientists to infer the nature of matter by the way.
Lecture 2: Physical Processes In Astrophysical and Laboratory Plasmas Lecture 1: Temperature-Density regime Many physical processes Focus on Atomic+Plasma.
Comparison of Stark Broadening and Doppler Broadening of Spectral Lines in Dense Hot Plasmas By Michael Zellner.
STARK WIDTHS OF SPECTRAL LINES OF NEUTRAL NEON Milan S. Dimitrijević, Zoran Simić, Andjelka Kovačević, Sylvie Sahal-Bréchot.
Zoran Simić and Milan S. Dimitrijević Astronomical Observatory, Volgina 7, Belgrade, Serbia
A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Elektro 041 Analysis of Acoustic Spectra Reflecting Ion Transport Processes in Glassy Electrolytes P. Hockicko a), P. Bury a), S. Jurečka b), M. Jamnický.
Average Lifetime Atoms stay in an excited level only for a short time (about 10-8 [sec]), and then they return to a lower energy level by spontaneous emission.
B.SC.II PAPER-B (OPTICS and LASERS)
The Classification of Stellar Spectra The Formation of Spectral Lines The Hertzsprung-Russell Diagram.
Spectroscopy Mahsa Ranji ECE-E641.
to Optical Atomic Spectroscopy
Plasma diagnostics using spectroscopic techniques
Internal partition function calculated with where N is the particle density (cm 3 ) Influence of Electronically Excited States on Thermodynamic Properties.
Atoms in stellar atmospheres are excited and ionized primarily by collisions between atoms/ions/electrons (along with a small contribution from the absorption.
Tunable, resonant heterodyne interferometer for neutral hydrogen measurements in tokamak plasmas * J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C.
Atoms in stellar atmospheres are excited and ionized primarily by collisions between atoms/ions/electrons (along with a small contribution from the absorption.
Operated by the Los Alamos National Security, LLC for the DOE/NNSA IAEA CODE CENTRE NETWORK SEPT 2010 Recent Developments with the Los Alamos Atomic Physics.
On the Stark broadening of Cr II spectral lines in atmospheres of DB white dwarfs Z. Simić 1, M. S. Dimitrijević 1,2, A. Kovačević 3, S. Sahal-Bréchot.
Spectroscopy and Atomic Structure Ch 04.
Studying the peculiar and complex line profiles in the spectra of hot emission stars and quasars E. Danezis 1, E. Lyratzi 1, L. Č. Popović 2, M. S. Dimitrijević.
-Plasma can be produced when a laser ionizes gas molecules in a medium -Normally, ordinary gases are transparent to electromagnetic radiation. Why then.
Evaluation of the Cu atomic density during sputter deposition process with optical emission spectroscopy Takeo Nakano, Kouji Tanaka and Shigeru Baba Dept.
VAMDC Project VAMDC aims at building an interoperable e-Infrastructure for the exchange of atomic and molecular data. VAMDC is a complex project involving.
Elemental Analysis using Atomic Absorption and Emission Spectroscopy Bodhisatwa Das.
Chapter 4 Spectroscopy The beautiful visible spectrum of the star Procyon is shown here from red to blue, interrupted by hundreds of dark lines caused.
Behavior of Spectral Lines – Part II
Chapter 4.
Collisional-Radiative Model For Atomic Hydrogen Plasma L. D. Pietanza, G. Colonna, M. Capitelli Department of Chemistry, University of Bari, Italy IMIP-CNR,
Calculation of lineshape parameters for self- broadening of water vapor transitions via complex Robert-Bonamy theory Bobby Antony, Steven Neshyba* & Robert.
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
MEASUREMENTS OF THE SHIFT AND WIDTH OF SODIUM nS - 3P TRANSITIONS IN HIGH PRESSURE SODIUM DISCHARGE IN HIGH PRESSURE SODIUM DISCHARGE Z. Miokovic 1, D.
STARK-WIDTH REGULARITIES WITHIN SPECTRAL SERIES OF NEUTRAL ATOMS Authors: I. Tapalaga, I. P. Dojcinovic and J. Puric; University of Belgrade – Faculty.
J.Vaitkus et al. PC spectra. CERN RD50 Workshop, Ljubljana, "Analysis of deep level system transformation by photoionization spectroscopy"
ATOMIC DATA AND STARK BROADENING OF Nb III Zoran Simić Milan S. Dimitrijević Luka Č. Popović Astronomical Observatory Belgrade, 11060, Serbia.
Spectral Line Formation
Chapter 13 Cont’d – Pressure Effects More curves of growth How does the COG depend on excitation potential, ionization potential, atmospheric parameters.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
Saturation Roi Levy. Motivation To show the deference between linear and non linear spectroscopy To understand how saturation spectroscopy is been applied.
Flame Emission Spectrometry
Milan S. Dimitrijević and Nenad Milovanović
Chapter 13 – Behavior of Spectral Lines
The Classical Damping Constant
Details of Equation-of-State and Opacity Models
Lecture 3 Radiative Transfer
REGULARITIES AND SYSTEMATIC TRENDS ON Zr IV STARK WIDTHS
MODELS OF EMISSION LINE PROFILES AND SPECTRAL ENERGY DISTRIBUTIONS
Interactions of Electromagnetic Radiation
Ion-beam, photon and hyperfine methods in nano-structured materials
SPATIAL & TEMPORAL EVOLUTION OF
Presentation transcript:

ATOMIC DATA AND STARK BROADENING OF CuI AND AgI SPECTRAL LINES: SELECTION AND ANALYSIS Radio Physics Faculty of Taras Schevchenko National University of Kyiv R. V. Semenyshyn, I. L. Babich, V. F. Boretskij, A. N. Veklich IX Serbian conference on spectral line shapes in astrophysics

2 Selected CuI spectral lines and their atomic data. Boltzmann plot obtained by CuI spectral lines at arc current 3.5 A using large variety of up-to-date atomic data. Optical emission spectroscopy Selection of CuI spectral lines and their atomic data 1. Kerkhoff Р. Micali G., Werner K., Wolf A., and Zimmermann P. Radiative decay and autoionization in the 4D-States of the 3d94s5s configuration in Cu I / H. Kerkhoff, // Z. Phys. A - Atoms and Nuclei – – 300. – P Borges F. O., Cavalcanti G. H. and Trigueiros A. G. Determination of plasma temperature by a semi-empirical method // Brazilian Journal of Physics. – – 34, No 4B. – P Bielski A. A critical survey of atomic transition probabilities for Cu I // J. Quant. Spectrosc. Radiat. Transfer. – – 15. – P Pichler G. Properties of the oscillator strengths of Cu I and Ag I spectral lines // Fizika. – – 4. – P Fu K. Jogwich M., Knebel M., and Wiesemann K. Atomic transition probabilities and lifetimes for the CuI system // Atomic Data and Nuclear Data Tables – – 61, No. 1. – P Riemann M. Die Messung von relativen und absoluten optischen Ubergangswahrscheinlichkeiten des CuI im wandstabilisierten Lichtbogen // Z. Phys. – – 179. P Migdalek J. Relativistic oscillator strengths for some transitions in Cu(I), Ag(I) and Au(I) // J. Quant. Spectrosc. Radiat. Transfer – – 20, No. 1. – P

3 Boltzmann plot obtained by CuI spectral lines at arc current 3.5 A using selected atomic data. Optical emission spectroscopy Selection of CuI spectral lines and their atomic data Selected CuI spectral lines and their atomic data. Babich, I.L., Boretskij, V.F., Veklich, A.N., Ivanisik, A.І., Semenyshyn, R.V., Kryachko, L.A., Minakova, R.V., Spectroscopy of electric arc plasma between composite electrodes Ag-CuO // Electrical contacts and electrodes / Kiev: “Frantsevich Institute for Problems of Materials Science”. 2010, p (in Ukrainian) // – accessed May 14, 2013.

4 Optical emission spectroscopy Selection of AgI spectral lines and their atomic data Boltzmann plot obtained by AgI spectral lines at arc current 3.5 A using large variety of up-to- date atomic data. Selected AgI spectral lines and their atomic data. 8. Lavin С. Almaraz M. A., Martin I. Relativistic oscillator strengths for excited state transitions in some ions of the silver isoelectronic sequence // Z. Phys. D – – 34. – P Plehotkina G. L. Radiative lifetimes Ag I, Ag II // Optics and Spectroscopy. – – 51, № 1. – P Zheng N., Wang T., and Yang R. Transition probability of CuI, AgI, and AuI from weakest bound electron potential model theory // J. of Chem. Phys. – – 113. – P Migdalek J. and Baylis W. E. Influence of atomic core polarisation on oscillator strengths for 2S1/2-2P1/2,3/2 and 2P1/2,3/2-2D3/2,5/2 transitions in Cu I, Ag I and Au I spectra // J. Phys. B: At. Mol. Phys. – – 11, No. 17. – P. L497- L Terpstra J. and Smit J. A. Measurement of “optical” transition probabilities in the silver atom // Physica. – – 24. – P

5 Optical emission spectroscopy Selection of AgI spectral lines and their atomic data Selected AgI spectral lines and their atomic data. Boltzmann plot obtained by AgI spectral lines at arc current 3.5 A using selected atomic data.

Radial profiles of electric arc plasma temperatures in air, obtained by Boltzmann plot technique using CuI (■), AgI (○) spectral lines and by relative intensities of AgI – 768.8nm (▲), arc currents 3.5 A (a) and 30 A (b). ab 6 Optical emission spectroscopy Temperature measurement

7 Optical emission spectroscopy Radial distributions of electron density obtained by AgI (■), AgI (▲), CuI (○) and CuI ( ) nm in arc current 30 A Electron density measurement Stark broadening data. 13. Konjevich R., Konjevich N. Stark broadening and shift of neutral copper spectral lines // Fizika. – – 18, No. 4. – р Dimitrijevic M. S., Sahal-Brechot S. Atomic Data and Nuclear Data Tables. – – 85. – P

8 Radial profiles of cooper atoms density of electric arc discharge plasma obtained using OES (■) and LAS(○), arc current 3.5 A. Laser absorption spectroscopy Comparison of copper density measurement

Conclusions  Atomic data of CuI and AgI spectral lines were carefully analyzed and selected. Namely, oscillator strength of these elements are recommended for spectroscopic diagnostics of plasma sources with copper and/or silver vapours.  Stark broadening of CuI and AgI spectral lines and parameters of this mechanism are testified. CuI: AgI:

Thank you for your attention More detailed information concerning experiment organization and measurement techniques will be described during report: “Spectroscopy peculiarities of thermal electric arc discharge plasma between composite electrodes Ag-SnO 2 -ZnO” (15.40 p.m., 16 th of May)

References 1. Kerkhoff Р. Micali G., Werner K., Wolf A., and Zimmermann P. Radiative decay and autoionization in the 4D- States of the 3d94s5s configuration in Cu I / H. Kerkhoff, // Z. Phys. A - Atoms and Nuclei – – 300. – P Borges F. O., Cavalcanti G. H. and Trigueiros A. G. Determination of plasma temperature by a semi-empirical method // Brazilian Journal of Physics. – – 34, No 4B. – P Bielski A. A critical survey of atomic transition probabilities for Cu I // J. Quant. Spectrosc. Radiat. Transfer. – – 15. – P Pichler G. Properties of the oscillator strengths of Cu I and Ag I spectral lines // Fizika. – – 4. – P Fu K. Jogwich M., Knebel M., and Wiesemann K. Atomic transition probabilities and lifetimes for the CuI system // Atomic Data and Nuclear Data Tables – – 61, No. 1. – P Riemann M. Die Messung von relativen und absoluten optischen Ubergangswahrscheinlichkeiten des CuI im wandstabilisierten Lichtbogen // Z. Phys. – – 179. P Migdalek J. Relativistic oscillator strengths for some transitions in Cu(I), Ag(I) and Au(I) // J. Quant. Spectrosc. Radiat. Transfer – – 20, No. 1. – P Lavin С. Almaraz M. A., Martin I. Relativistic oscillator strengths for excited state transitions in some ions of the silver isoelectronic sequence // Z. Phys. D – – 34. – P Plehotkina G. L. Radiative lifetimes Ag I, Ag II // Optics and Spectroscopy. – – 51, № 1. – P Zheng N., Wang T., and Yang R. Transition probability of CuI, AgI, and AuI from weakest bound electron potential model theory // J. of Chem. Phys. – – 113. – P Migdalek J. and Baylis W. E. Influence of atomic core polarisation on oscillator strengths for 2S 1/2 -2P 1/2,3/2 and 2P 1/2,3/2 -2D 3/2,5/2 transitions in Cu I, Ag I and Au I spectra // J. Phys. B: At. Mol. Phys. – – 11, No. 17. – P. L497-L Terpstra J. and Smit J. A. Measurement of “optical” transition probabilities in the silver atom // Physica. – – 24. – P Konjevich R., Konjevich N. Stark broadening and shift of neutral copper spectral lines // Fizika. – – 18, No. 4. – р Dimitrijevic M. S., Sahal-Brechot S. Atomic Data and Nuclear Data Tables. – – 85. – P

Supplementary information

13 Table.1. Selected CuI spectral lines and their atomic data. Table.2. Selected AgI spectral lines and their atomic data. Table.3. Stark broadening data. References 1.Kerkhoff Р. Micali G., Werner K., Wolf A., and Zimmermann P. Radiative decay and autoionization in the 4D-States of the 3d94s5s configuration in Cu I / H. Kerkhoff, // Z. Phys. A - Atoms and Nuclei – – 300. – P Borges F. O., Cavalcanti G. H. and Trigueiros A. G. Determination of plasma temperature by a semi-empirical method // Brazilian Journal of Physics. – – 34, No 4B. – P Bielski A. A critical survey of atomic transition probabilities for Cu I // J. Quant. Spectrosc. Radiat. Transfer. – – 15. – P Pichler G. Properties of the oscillator strengths of Cu I and Ag I spectral lines // Fizika. – – 4. – P Fu K. Jogwich M., Knebel M., and Wiesemann K. Atomic transition probabilities and lifetimes for the CuI system // Atomic Data and Nuclear Data Tables – – 61, No. 1. – P Riemann M. Die Messung von relativen und absoluten optischen Ubergangswahrscheinlichkeiten des CuI im wandstabilisierten Lichtbogen // Z. Phys. – – 179. P Migdalek J. Relativistic oscillator strengths for some transitions in Cu(I), Ag(I) and Au(I) // J. Quant. Spectrosc. Radiat. Transfer – – 20, No. 1. – P Lavin С. Almaraz M. A., Martin I. Relativistic oscillator strengths for excited state transitions in some ions of the silver isoelectronic sequence // Z. Phys. D – – 34. – P Plehotkina G. L. Radiative lifetimes Ag I, Ag II // Optics and Spectroscopy. – – 51, № 1. – P Zheng N., Wang T., and Yang R. Transition probability of CuI, AgI, and AuI from weakest bound electron potential model theory // J. of Chem. Phys. – – 113. – P Migdalek J. and Baylis W. E. Influence of atomic core polarisation on oscillator strengths for 2S 1/2 -2P 1/2,3/2 and 2P 1/2,3/2 -2D 3/2,5/2 transitions in Cu I, Ag I and Au I spectra // J. Phys. B: At. Mol. Phys. – – 11, No. 17. – P. L497-L Terpstra J. and Smit J. A. Measurement of “optical” transition probabilities in the silver atom // Physica. – – 24. – P Konjevich R., Konjevich N. Stark broadening and shift of neutral copper spectral lines // Fizika. – – 18, No. 4. – р Dimitrijevic M. S., Sahal-Brechot S. Atomic Data and Nuclear Data Tables. – – 85. – P

14 X Y ε(r) – local emissivity Abel transformation: [*] proposed a method of representation of the this integral equation as a system of linear equations * Bockasten K. Transformation of Observed Radiances into Radial Distribution of the Emission of a Plasma // Journal of the optical society of America.­­ – − V. 51, − P

15 Model of local thermal equilibrium - concentrations of plasma components (electrons, atoms and ions) linked Saha equation of ionization - distribution law of velocities of plasma particles (atoms, molecules, ions) is subordinate to Maxwell - value of concentrations of particles in the i-th and k-th state are from the Boltzmann formula

16 - temperature of plasma from method of relative intensities of spectral lines Technique of relative intensities of spectral lines - Intensity of spectral lines - for optically thin plasma the intensity of spectral lines - the ratio of intensities of two spectral lines - if two lines belong to the same atom or ion

K – proportionality coefficient, which reflects the electrons density normalized to the half-width of the spectral line Electron density in case of dominating Stark broadening of spectral lines Method of calculation electron density in case with current 3.5A ; 17