LP Extra Issues and Examples. Special Cases in LP Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution 2.

Slides:



Advertisements
Similar presentations
1Introduction to Linear ProgrammingLesson 2 Introduction to Linear Programming.
Advertisements

LINEAR PROGRAMMING (LP)
Linear Programming.
LINEAR PROGRAMMING (LP)
Operations Management Linear Programming Module B - Part 2
B-1 Operations Management Linear Programming Module B - New Formulations.
C – 1 Linear Programming. C – 2 Linear Programming  A mathematical technique to help plan and make decisions relative to the trade-offs necessary to.
Holiday Meal Turkey Ranch
Chapter 7 Linear Programming Models Part One n Basis of Linear Programming n Linear Program formulati on.
Managerial Decision Modeling with Spreadsheets
Chapter 2 Linear Programming Models: Graphical and Computer Methods © 2007 Pearson Education.
19 Linear Programming CHAPTER
Linear Programming Introduction George B Dantzig developed LP in It is a problem solving approach designed to help managers/decision makers in planning.
B Linear Programming PowerPoint presentation to accompany
© 2006 Prentice Hall, Inc.B – 1 Operations Management Module B – Linear Programming © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 7-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 7 Linear.
Linear Programming Special Cases Alternate Optimal Solutions No Feasible Solution Unbounded Solutions.
B-1 Operations Management Linear Programming Module B.
Linear Programming (6S) and Transportation Problem (8S)
1 2TN – Linear Programming  Linear Programming. 2 Linear Programming Discussion  Requirements of a Linear Programming Problem  Formulate:  Determine:Graphical.
Linear and Integer Programming Models
Linear Programming (LP)
1 Lecture 2 & 3 Linear Programming and Transportation Problem.
B-1 Operations Management Linear Programming Module B - Harder Formulations.
B-1 Operations Management Linear Programming Module B.
Linear Programming: Model Formulation and Graphical Solution
Linear Programming Models: Graphical Methods 5/4/1435 (1-3 pm)noha hussein elkhidir.
Chapter 3 Introduction to optimization models. Linear Programming The PCTech company makes and sells two models for computers, Basic and XP. Profits for.
FORMULATION AND GRAPHIC METHOD
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
Linear Programming Models: Graphical and Computer Methods
1© 2003 by Prentice Hall, Inc. Upper Saddle River, NJ The Wyndor Glass Company Problem (Hillier and Liberman) The Wyndor Glass Company is planning.
Chapter 2 Linear Programming Models: Graphical and Computer Methods
3.4 Linear Programming.
Operations Management
B Linear Programming PowerPoint presentation to accompany
1 Additional examples LP Let : X 1, X 2, X 3, ………, X n = decision variables Z = Objective function or linear function Requirement: Maximization of the.
THE GALAXY INDUSTRY PRODUCTION PROBLEM -
Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
Opener. Notes: 3.4 Linear Programming Optimization  Many real-life problems involve a process called optimization.  This means finding a maximum or.
A model consisting of linear relationships representing a firm’s objective and resource constraints Linear Programming (LP) LP is a mathematical modeling.
1 Max 8X 1 + 5X 2 (Weekly profit) subject to 2X 1 + 1X 2  1000 (Plastic) 3X 1 + 4X 2  2400 (Production Time) X 1 + X 2  700 (Total production) X 1.
Linear Programming (LP) Problems MAX (or MIN): c 1 X 1 + c 2 X 2 + … + c n X n Subject to:a 11 X 1 + a 12 X 2 + … + a 1 n X n
Linear Programming Models: Graphical and Computer Methods
Saba Bahouth 1 Supplement 6 Linear Programming. Saba Bahouth 2  Scheduling school busses to minimize total distance traveled when carrying students 
Sensitivity analysis continued… BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
Introduction to Operations Management
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
1. 2 We studying these special cases to: 1- Present a theoretical explanation of these situations. 2- Provide a practical interpretation of what these.
BA250 MANAGEMENT SCIENCE EXAMPLE PROBLEMS
© 2008 Prentice Hall, Inc.B – 1 Operations Management Module B – Linear Programming PowerPoint presentation to accompany Heizer/Render Principles of Operations.
Adeyl Khan, Faculty, BBA, NSU 1 Introduction to Linear Programming  A Linear Programming model seeks to maximize or minimize a linear function, subject.
CDAE Class 16 Oct. 18 Last class: 3. Linear programming and applications Quiz 4 Today: Result of Quiz 4 3. Linear programming and applications Group.
© 2009 Prentice-Hall, Inc. 7 – 1 Decision Science Chapter 3 Linear Programming: Maximization and Minimization.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
-114- HMP654/EXECMAS Linear Programming Linear programming is a mathematical technique that allows the decision maker to allocate scarce resources in such.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 7-1 1© 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 7 Linear.
Linear Programming Models: Graphical and Computer Methods 7 To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Chapter 2 Linear Programming Models: Graphical and Computer Methods
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
Ardavan Asef-Vaziri Systems and Operations Management
Chapter 2 An Introduction to Linear Programming
Introduction to Linear Programs
Operations Management Linear Programming Module B
Max Z = x1 + x2 2 x1 + 3 x2  6 (1) x2  1.5 (2) x1 - x2  2 (3)
Optimization Theory Linear Programming
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Module B Linear Programming.
Practical Issues Finding an initial feasible solution Cycling
Presentation transcript:

LP Extra Issues and Examples

Special Cases in LP Infeasibility Unbounded Solutions Redundancy Degeneracy More Than One Optimal Solution 2

A Problem with No Feasible Solution 3 X2X2 X1X Region Satisfying 3rd Constraint Region Satisfying First 2 Constraints

A Solution Region That is Unbounded to the Right 4 X2X2 X1X Feasible Region X 1 > 5 X 2 < 10 X 1 + 2X 2 > 10

A Problem with a Redundant Constraint 5 X2X2 X1X Feasible Region 2X 1 + X 2 < 30 X 1 < 25 X 1 + X 2 < 20 Redundant Constraint

Sensitivity Analysis Changes in the Objective Function Coefficient Changes in Resources (RHS) Changes in Technological (LHS) Coefficients 6

Minimization Example X 1 =number of tons of black-and-white picture chemical produced X 2 =number of tons of color picture chemical produced Minimize total cost =2,500X 1 +3,000X 2 Subject to: X 1 ≥ 30tons of black-and-white chemical X 2 ≥ 20tons of color chemical X 1 + X 2 ≥ 60tons total X 1, X 2 ≥ $0nonnegativity requirements

Minimization Example Table B – 50 – – 30 – – 10 – – ||||||| X1X1X1X1 X2X2X2X2 Feasible region X 1 = 30 X 2 = 20 X 1 + X 2 = 60 b a

Minimization Example Total cost at a=2,500X 1 +3,000X 2 =2,500 (40)+3,000(20) =$160,000 Total cost at b=2,500X 1 +3,000X 2 =2,500 (30)+3,000(30) =$165,000 Lowest total cost is at point a

LP Applications Production-Mix Example Department ProductWiringDrillingAssemblyInspectionUnit Profit XJ $ 9 XM $12 TR $15 BR $11 CapacityMinimum Department(in hours)ProductProduction Level Wiring1,500XJ Drilling2,350XM Assembly2,600TR29300 Inspection1,200BR788400

LP Applications X 1 = number of units of XJ201 produced X 2 = number of units of XM897 produced X 3 = number of units of TR29 produced X 4 = number of units of BR788 produced Maximize profit = 9X X X X 4 subject to.5X X X 3 +1X 4 ≤ 1,500 hours of wiring 3X 1 +1X 2 +2X 3 +3X 4 ≤ 2,350 hours of drilling 2X 1 +4X 2 +1X 3 +2X 4 ≤ 2,600 hours of assembly.5X 1 +1X 2 +.5X 3 +.5X 4 ≤ 1,200 hours of inspection X 1 ≥ 150 units of XJ201 X 1 ≥ 150 units of XJ201 X 2 ≥ 100 units of XM897 X 3 ≥ 300 units of TR29 X 4 ≥ 400 units of BR788

LP Applications Diet Problem Example A3 oz2 oz 4 oz B2 oz3 oz 1 oz C1 oz0 oz 2 oz D6 oz8 oz 4 oz Feed ProductStock XStock YStock Z

LP Applications X 1 = number of pounds of stock X purchased per cow each month X 2 = number of pounds of stock Y purchased per cow each month X 3 = number of pounds of stock Z purchased per cow each month Minimize cost =.02X X X 3 Ingredient A requirement:3X 1 +2X 2 +4X 3 ≥ 64 Ingredient B requirement:2X 1 +3X 2 +1X 3 ≥ 80 Ingredient C requirement:1X 1 +0X 2 +2X 3 ≥ 16 Ingredient D requirement:6X 1 +8X 2 +4X 3 ≥ 128 Stock Z limitation:X 3 ≤ 80 X 1, X 2, X 3 ≥ 0 Cheapest solution is to purchase 40 pounds of grain X at a cost of $0.80 per cow

LP Applications Labor Scheduling Example TimeNumber ofTimeNumber of PeriodTellers RequiredPeriodTellers Required 9 AM - 10 AM 101 PM - 2 PM AM - 11 AM 122 PM - 3 PM AM - Noon143 PM - 4 PM 15 Noon - 1 PM 164 PM - 5 PM 10 F = Full-time tellers P 1 = Part-time tellers starting at 9 AM (leaving at 1 PM ) P 2 = Part-time tellers starting at 10 AM (leaving at 2 PM ) P 3 = Part-time tellers starting at 11 AM (leaving at 3 PM ) P 4 = Part-time tellers starting at noon (leaving at 4 PM ) P 5 = Part-time tellers starting at 1 PM (leaving at 5 PM )

LP Applications = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) Minimize total daily manpower cost F+ P 1 ≥ 10 (9 AM - 10 AM needs) F+ P 1 + P 2 ≥ 12 (10 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 ≥ 14 (11 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 + P 4 ≥ 16 (noon - 1 PM needs) F+ P 2 + P 3 + P 4 + P 5 ≥ 18 (1 PM - 2 PM needs) F+ P 3 + P 4 + P 5 ≥ 17 (2 PM - 3 PM needs) F+ P 4 + P 5 ≥ 15 (3 PM - 7 PM needs) F+ P 5 ≥ 10 (4 PM - 5 PM needs) F≤ 12 4(P 1 + P 2 + P 3 + P 4 + P 5 ) ≤.50( )

LP Applications = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) Minimize total daily manpower cost F+ P 1 ≥ 10 (9 AM - 10 AM needs) F+ P 1 + P 2 ≥ 12 (10 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 ≥ 14 (11 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 + P 4 ≥ 16 (noon - 1 PM needs) F+ P 2 + P 3 + P 4 + P 5 ≥ 18 (1 PM - 2 PM needs) F+ P 3 + P 4 + P 5 ≥ 17 (2 PM - 3 PM needs) F+ P 4 + P 5 ≥ 15 (3 PM - 7 PM needs) F+ P 5 ≥ 10 (4 PM - 5 PM needs) F≤ 12 4(P 1 + P 2 + P 3 + P 4 + P 5 )≤.50(112) F, P 1, P 2, P 3, P 4, P 5 ≥ 0

LP Applications = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) = $75F + $24(P 1 + P 2 + P 3 + P 4 + P 5 ) Minimize total daily manpower cost F+ P 1 ≥ 10 (9 AM - 10 AM needs) F+ P 1 + P 2 ≥ 12 (10 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 ≥ 14 (11 AM - 11 AM needs) 1/2 F+ P 1 + P 2 + P 3 + P 4 ≥ 16 (noon - 1 PM needs) F+ P 2 + P 3 + P 4 + P 5 ≥ 18 (1 PM - 2 PM needs) F+ P 3 + P 4 + P 5 ≥ 17 (2 PM - 3 PM needs) F+ P 4 + P 5 ≥ 15 (3 PM - 7 PM needs) F+ P 5 ≥ 10 (4 PM - 5 PM needs) F≤ 12 4(P 1 + P 2 + P 3 + P 4 + P 5 )≤.50(112) F, P 1, P 2, P 3, P 4, P 5 ≥ 0 There are two alternate optimal solutions to this problem but both will cost $1,086 per day F= 10F= 10 P 1 = 0P 1 = 6 P 2 = 7P 2 = 1 P 3 = 2P 3 = 2 P 4 = 2P 4 = 2 P 5 = 3P 5 = 3 FirstSecondSolution