Hydrostatic Equilibrium Chapt 3, page 28

Slides:



Advertisements
Similar presentations
4. 2 Moist air thermodynamics (Reading Text
Advertisements

* Reading Assignments:
LAB 6 10/16. Stability – Lapse Rate The rate at which a parcel cools as it rises. A dry* parcel cools at 10 degrees Celsius per kilometer***. A moist**
Atmospheric Stability
GEU 0047: Meteorology Lecture 6 Stability and Cloud Development.
Copyright © 2010 R.R. Dickerson & Z.Q. Li 1 The Slice Method Chapt 4 page 51. A conceptual model accounting for compensating motion by ambient air as a.
Assessing Atmospheric Stability… …Use of the Skew-T/log P diagram… (what does it all mean?)
Atmospheric Stability and Cloud Formation. RECAP Mechanical equilibrium: stable, unstable, neutral. Adiabatic expansion/compression: no heat exchange.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 2 “The atmosphere (II)” Dr. Eugene Cordero San Jose State University.
CHAPTER 4: ATMOSPHERIC TRANSPORT Forces in the atmosphere: Gravity g Pressure-gradient Coriolis Friction to R of direction of motion (NH) or L (SH) Equilibrium.
Chapter 8 Coordinate Systems.
Tephigrams ENVI1400 : Lecture 8.
METO 637 Lesson 1. Fig Troposphere- literally means region where air “turns over” -temperature usually decreases (on average ~6.5°C/km) with.
Stability & Skew-T Diagrams
Textbook chapter 2, p chapter 3, p chapter 4, p Stability and Cloud Development.
AOSS 321, Winter 2009 Earth System Dynamics Lecture 11 2/12/2009 Christiane Jablonowski Eric Hetland
Outline Further Reading: Chapter 06 of the text book - stability and vertical motions - five examples - orographic precipitation Natural Environments:
Lecture 6 Adiabatic Processes. Definition Process is adiabatic if there is no exchange of heat between system and environment, i.e., dq = 0 dq = 0.
Chapter 5 Soundings.
Module 9 Atmospheric Stability MCEN 4131/ Preliminaries I will be gone next week, Mon-Thur Tonight is design night, 7:30ish, meet in classroom.
EPS200: Atmospheric Chemistry Instructors: Daniel J. Jacob and Steven C. Wofsy Teaching Fellow: Helen M. Amos EPS 200 is intended as a “core” graduate.
Temperature Lapse rate- decrease of temperature with height:  = - dT/dz Environmental lapse rate (  ) order 6C/km in free atmosphere  d - dry adiabatic.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 4 “Heat in the atmosphere” Dr. Eugene Cordero San Jose State University.
Copyright © 2011 R. R. Dickerson & Z.Q. Li 1 Continuing to build a cloud model: Consider a wet air parcel Parcel boundary As the parcel moves assume no.
Copyright © 2009 R. R. Dickerson & Z.Q. Li 1 Convection: Parcel Theory Chapt. 4 page 48. Vertical motion of parcels of air. Buoyant convection leads to.
THE HADLEY CIRCULATION (1735): global sea breeze HOT COLD Explains: Intertropical Convergence Zone (ITCZ) Wet tropics, dry poles Problem: does not account.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 3 Thermodynamics I Dr. Eugene Cordero San Jose State University.
CHAPTER 4: ATMOSPHERIC TRANSPORT
Copyright R. R. Dickerson LECTURE 2 AOSC 637 Atmospheric Chemistry R. Dickerson.
* Reading Assignments: All sections of Chapter 5.
* Reading Assignments:
Moisture and Atmospheric Stability
Temperature, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Temperature “Lapse Rates” Rising & Falling.
* Reading Assignments:
LECTURE 3 Basics of atmospheric composition and physics AOSC 434 AIR POLLUTION Russell R. Dickerson.
AOSS 401, Fall 2006 Lecture 8 September 24, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Lapse Rates and Stability of the Atmosphere
Thermodynamics, Buoyancy, and Vertical Motion
Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic “Lapse Rates” Convective Motions.
1 The Thermodynamic Diagram Adapted by K. Droegemeier for METR 1004 from Lectures Developed by Dr. Frank Gallagher III OU School of Meteorology.
Atmospheric Moisture Vapor pressure (e, Pa) The partial pressure exerted by the molecules of vapor in the air. Saturation vapor pressure (e s, Pa ) The.
Meteorology & Air Pollution Dr. Wesam Al Madhoun.
ThermodynamicsM. D. Eastin We just the covered the large-scale hydrostatic environment… We now need to understand whether a small-scale moist air parcel.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS OF MOTION FOR ATMOSPHERE (CONT) LECTURE 7 (Reference: Peixoto & Oort, Chapter 3,7)
The Atmosphere: Part 3: Unsaturated convection Composition / Structure Radiative transfer Vertical and latitudinal heat transport Atmospheric circulation.
AOSS 401, Fall 2007 Lecture 6 September 19, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
* Reading Assignments: All Sections. 8. Hydrostatic Stability Describe the states of vertical stratification of atmosphere: * Stable equilibrium * Unstable.
Key Terms and Concepts ELR--Environmental Lapse Rate 5°C-6.5°C/1000 m – temperature of the STILL air as you ascend through the troposphere. ALR--Adiabatic.
Air Pollution Meteorology Ñ Atmospheric thermodynamics Ñ Atmospheric stability Ñ Boundary layer development Ñ Effect of meteorology on plume dispersion.
Chapter 6. Importance of Clouds  Release heat to atmosphere  Help regulate energy balance  Indicate physical processes.
Atmospheric Stability Terminology I Hydrostatic Equilibrium –Balance, in the vertical, between PGF and gravity –The general state of the atmosphere –Net.
Skew T Log P Diagram AOS 330 LAB 10 Outline Static (local) Stability Review Critical Levels on Thermodynamic Diagram Severe Weather and Thermodynamic.
Vertical Motion and Temperature Rising air expands, using energy to push outward against its environment, adiabatically cooling the air A parcel of air.
Moisture  There are several methods of expressing the moisture content (water in vapor form) of a volume of air.  Vapor Pressure: The partial pressure.
7 – Group 임지유, 김도형, 방주희. Consider a layer of the atmosphere in which ( Γ
AOSS 401, Fall 2006 Lecture 7 September 21, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
Stability and Introduction to the Thermodynamic Diagram
Stability and Cloud Development
Atmospheric Stability
Thermodynamics, Buoyancy, and Vertical Motion
Stability.
Hydrostatics Dp Dz Air Parcel g.
Copyright © 2014 R. R. Dickerson & Z.Q. Li
AOSS 321, Winter 2009 Earth System Dynamics Lecture 11 2/12/2009
Hydrostatic Equilibrium Salby Chapt. 6; R&Y Chapt 3, page 28
4. Atmospheric transport
Fall 2000 Author: Dr. Ken Crawford University of Oklahoma
Stability and Cloud Development
Fundamentals of air Pollution Engineering
Meteorology & Air Pollution Dr. Wesam Al Madhoun
Presentation transcript:

Hydrostatic Equilibrium Chapt 3, page 28 g : gravity p-dp p+dp z-dz z+dz (one of the best approximations in meteorology) Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2010 R. R. Dickerson & Z.Q. Li Remember pressure is force per unit area so pressure per unit height is weight (mg) per unit volume (Nm-2 m-1 = kg m s-2 m-3). In this class we will usually ignore horizontal variations in thermodynamic variables (T* is virtual temp) and write Copyright © 2010 R. R. Dickerson & Z.Q. Li

Copyright © 2010 R. R. Dickerson & Z.Q. Li Increment of geopotential energy. Thus the thermodynamic coordinates -RlnP, T yield areas proportional to energy (emagram) Consider the case for g constant (good assumption). Integrate the hydrostatic equation from p = po to p and zo to z. Copyright © 2010 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li To find the mean virtual temperature take the weighted average: p -Rlnp po T* Thus thermodynamic diagrams can be used to determine the geopotential thickness between pressure levels. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Geopotential Define an increment of geopotential g has a slight variation with latitude and altitude which can usually be ignored; in AOSC652 you will integrate for g = f(z). So we can define an increment of geopotential thickness, or height. dY = dF/go; go = 9.8 m/s2 Copyright © 2013 R. R. Dickerson & Z.Q. Li

Moisture effects on Geopotential Copyright © 2013 R. R. Dickerson & Z.Q. Li

Pressure Variation with z for “Special” Atmospheres 1. Constant Density r = ro (Homogenous Atmosphere) H → “Scale Height” = height of const. T (288K), homogenous atmosphere ~ 8 km. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li 2. Constant Lapse Rate Atmosphere Define Lapse Rate Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li 3. Isothermal Atmosphere : g = 0 The isothermal approximation is good to about 30% for the troposphere. Problem for students: What fraction of the mass of atmosphere lies between 800 and 700 hPa? Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Stability Criteria Air parcel properties P, T, a, r, w Environment properties P’, T’, a’, r’, w’ Assume 1. Parcel and environment are in instantaneous dynamic equilibrium: P = P’ 2. Atmosphere is in hydrostatic equilibrium. 3. Parcel and environment do not mix. 4. No compensating motion by environment as an air parcel moves. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Consider a dry adiabatic displacement by an air parcel: Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Consider a Saturated Adiabatic displacement (pseudo adiabatic): Note that wo= f(T,P) We want to derive dT/dz for this process using the hydrostatic equation and assuming a/a’ ~ 1. so Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li

Saturated Adiabatic Lapse Rate The table below lists values of Gs in oK/km pressure 1000 mb 700 mb 500 mb -30 C 9.2 9.0 8.7 0 C 6.5 5.8 5.1 20 C 4.3 3.7 3.3 temperature Copyright © 2013 R. R. Dickerson & Z.Q. Li Note that Gs < Gd

Buoyant Force on an Air Parcel The environment is in hydrostatic equilibrium (no acceleration) In general, an air parcel WILL be subject to an acceleration due to density differences with the environment, so for the parcel: Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li

Stability Criteria zo parcel We are interested in small displacements of a parcel from its original location. If with a small displacement we find that The environment is said to be Unstable Neutral Stable Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li For convenience, consider the parcel location zo to be zero. The temperature of the environment may be written as: If the displacement z is sufficiently small, Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li For the parcel we may write: Gp = parcel lapse rate. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Thus if… For dry displacements, use Gp= Gd For saturated displacements, use Gp= Gs Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Since Gs< Gd, we must also consider conditions between the two stability criteria for dry and saturated. G = parcel lapse rate g = environment lapse rate Copyright © 2013 R. R. Dickerson & Z.Q. Li

DIURNAL CYCLE OF SURFACE HEATING/COOLING: z Subsidence inversion MIDDAY 1 km Mixing depth NIGHT MORNING T NIGHT MORNING AFTERNOON Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li *** Emagram *** Copyright © 2013 R. R. Dickerson & Z.Q. Li

Convective Instability dry air Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Creterion for Convective Stability Copyright © 2013 R. R. Dickerson & Z.Q. Li

Criterion for Convective Instability Copyright © 2013 R. R. Dickerson & Z.Q. Li

DIURNAL CYCLE OF SURFACE HEATING/COOLING: z Subsidence inversion MIDDAY 1 km Mixing depth NIGHT MORNING T NIGHT MORNING AFTERNOON

ATMOSPHERIC LAPSE RATE AND STABILITY “Lapse rate” = -dT/dz Consider an air parcel at z lifted to z+dz and released. It cools upon lifting (expansion). Assuming lifting to be adiabatic, the cooling follows the adiabatic lapse rate G : z G = 9.8 K km-1 stable z unstable What happens following release depends on the local lapse rate –dTATM/dz: -dTATM/dz > G e upward buoyancy amplifies initial perturbation: atmosphere is unstable -dTATM/dz = G e zero buoyancy does not alter perturbation: atmosphere is neutral -dTATM/dz < G e downward buoyancy relaxes initial perturbation: atmosphere is stable dTATM/dz > 0 (“inversion”): very stable inversion ATM (observed) unstable T The stability of the atmosphere against vertical mixing is solely determined by its lapse rate Copyright © 2013 R. R. Dickerson & Z.Q. Li

EFFECT OF STABILITY ON VERTICAL STRUCTURE Copyright © 2013 R. R. Dickerson & Z.Q. Li

WHAT DETERMINES THE LAPSE RATE OF THE ATMOSPHERE? An atmosphere left to evolve adiabatically from an initial state would eventually tend to neutral conditions (-dT/dz = G ) at equilibrium Solar heating of surface disrupts that equilibrium and produces an unstable atmosphere: z z z ATM G final G ATM initial G T T T Initial equilibrium state: - dT/dz = G Solar heating of surface: unstable atmosphere buoyant motions relax unstable atmosphere to –dT/dz = G Fast vertical mixing in an unstable atmosphere maintains the lapse rate to G. Observation of -dT/dz = G is sure indicator of an unstable atmosphere. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2013 R. R. Dickerson & Z.Q. Li Plume looping, Baltimore ~2pm. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Plume Lofting, Beijing in Winter ~7am. Copyright © 2013 R. R. Dickerson & Z.Q. Li

Copyright © 2010 R. R. Dickerson & Z.Q. Li

Did you report the calibrated T? Copyright © 2010 R. R. Dickerson & Z.Q. Li

Copyright © 2010 R. R. Dickerson & Z.Q. Li

Copyright © 2010 R. R. Dickerson & Z.Q. Li Mean (±σ) oC 24.7 (±2.2) 23.8 (±1.5) 20.8 (±0.7) Copyright © 2010 R. R. Dickerson & Z.Q. Li

Copyright © 2010 R. R. Dickerson & Z.Q. Li Results Calibrating thermometers reduced σ from 2.2 to 1.5 oC. Eliminating siting differences and operator bias further reduced σ to 0.74 oC, a major improvement in precision, even without applying the calibration coefficients. To identify mesoscale differences in temperature, we need precision. We can identify a DT of 1.5 oC with 95% confidence. Copyright © 2010 R. R. Dickerson & Z.Q. Li