Chapter 16: Chemical Equilibrium- General Concepts WHAT IS EQUILIBRIUM?

Slides:



Advertisements
Similar presentations
Chapter 12 Gaseous Chemical Equilibrium
Advertisements

Equilibrium Unit 10 1.
Chemical Equilibrium AP Chem Unit 13.
Chemical Equilibrium A Balancing Act.
ADVANCED PLACEMENT CHEMISTRY EQUILIBRIUM. Chemical equilibrium * state where concentrations of products and reactants remain constant *equilibrium is.
CHAPTER 14 CHEMICAL EQUILIBRIUM
Chemical equilibrium – 2 opposing reactions occur simultaneously at the same rate ⇌ D E E D when the rate D E is equal to rate E D,
Chapter 13 Chemical Equilibrium.
Chemical Equilibrium Chapter Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium.
Chemical Equilibrium Chapter 6 pages Reversible Reactions- most chemical reactions are reversible under the correct conditions.
Chemical Equilibrium - General Concepts (Ch. 14)
AP Chapter 15.  Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  It results in the formation of an equilibrium mixture.
Chemical Equilibrium Chapter 13. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the.
Chapter 15 Chemistry the Central Science 12th Ed.
A.P. Chemistry Chapter 13 Equilibrium Equilibrium is not static, but is a highly dynamic state. At the macro level everything appears to have stopped.
Equilibrium UNIT 12. Overview  Concept of Equilibrium  Equilibrium constant  Equilibrium expression  Heterogeneous vs homogeneous equilibrium  Solving.
Chemical Equilibrium Rachel Won Period: 2 4/13/09.
Chapter 14 Chemical Equilibrium
Equilibrium Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall Chemistry, The Central.
1 Chemical Equilibrium Chapter 13 AP CHEMISTRY. 2 Chemical Equilibrium  The state where the concentrations of all reactants and products remain constant.
Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Quantitative Changes in Equilibrium Systems Chapter 7.
17 Chemical Equilibrium.
Chemical Equilibrium Chapter 13.
Chapter 15 Chemical Equilibrium
Chemical Equilibrium The reversibility of reactions.
Chemical Equilibrium Introduction to Chemical Equilibrium Equilibrium Constants and Expressions Calculations Involving Equilibrium Constants Using.
Chapter 13 Chemical Equilibrium. Section 13.1 The Equilibrium Condition Copyright © Cengage Learning. All rights reserved 2 Chemical Equilibrium  The.
Chapter 15 Chemical Equilibrium
Chapter 16 Chemical Equilibrium. Chapter 142 Chemical Equilibrium When compounds react, they eventually form a mixture of products and unreacted reactants,
CHEMICAL EQUILIBRIUM notes.
Chapter 14 Chemical Equilibrium
Equilibrium SCH4U organic photochromic molecules respond to the UV light.
1 Chemical Equilibrium You learned when we studied mechanisms that some rxns are reversible or equilibrium rxns The double arrow is used to show this.
Chemical Equilibrium Chapter 15.
© 2013 Pearson Education, Inc. Chapter 9, Section 1 General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake Chapter 9 © 2013 Pearson.
Chemical Equilibrium PART 2.
Equilibrium slideshttp:\\asadipour.kmu.ac.ir1.
Chemical Equilibrium 4/24/2017.
1 Chemical Equilibrium Chapter 17 (Honors) SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the.
Chemical Equilibrium CHAPTER 15
Equilibrium Notes Mrs. Stoops Chemistry. Eqm day 1 Chapter problems p 660 – 665: 14, 16, 20, 28, 32, 38, 42, 46, 50, 52, 59, 61, 70,
Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there is frantic.
Chapter 13 Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there.
CH 13 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 13.  Equilibrium is not static. It is a highly dynamic state.  Macro level reaction appears to have stopped  Molecular level frantic activity.
Chemical Equilibrium. n In systems that are in equilibrium, reverse processes are happening at the same time and at the same rate. n Rate forward = Rate.
Marie Benkley June 15, 2005 Equilibrium is a state in which both the forward and reverse reactions occur at equal rates. No net change is observed at.
Chapter 15 Chemical Equilibrium
Prentice Hall © 2003Chapter 15 Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 9th Edition David P. White.
Chapter 14 Lecture © 2014 Pearson Education, Inc. Sherril Soman Grand Valley State University Lecture Presentation Chapter 14 Chemical Equilibrium.
1 Chemical Equilibrium Chapter 14 Henri L. le Chatlier Adapted thermodynamics to equilibria; formulated the principle known by his name.
CHEM 163 Chapter 17 Spring 2009 Instructor: Alissa Agnello 1.
Chapter 15; CHEMICAL EQUILIBRIUM 14 | 1 Describing Chemical Equilibrium Chemical Equilibrium—A Dynamic Equilibrium The Equilibrium Constant Heterogeneous.
CHE1102, Chapter 14 Learn, 1 Chapter 15 Chemical Equilibrium.
Equilibrium The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. © 2012 Pearson Education,
Chapter 13 Chemical Equilibrium Reversible Reactions REACTANTS react to form products. PRODUCTS then react to form reactants. BOTH reactions occur: forward.
Prentice Hall © 2003Chapter 15 Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 9th Edition David P. White.
Chemical Equilibrium Reactants Products Reactants Products As the time increases… [Reactants] decrease, so the rate of forward reaction decreases; [Products]
Topic 22 Topic 22 Consider the reaction for the formation of ammonia from nitrogen and hydrogen. What is equilibrium? Chemical Equilibrium: Basic Concepts.
Chemical Equilibrium. Unit Objectives  Define chemical equilibrium.  Explain the nature of the equilibrium constant.  Write chemical equilibrium expressions.
 Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  When the forward reaction equals the reverse reaction.  It results.
Do Now 1.What is reaction rate? 2.What does the term “equilibrium” signify? Can you describe physical changes in the chemistry lab where equilibrium is.
13.1 EQUILIBRIUM CONDITION CHEMICAL EQUILIBRIUM The state where the concentrations of all reactants and products remain constant with time. On the molecular.
Chapter 14 Lecture © 2014 Pearson Education, Inc. Sherril Soman Grand Valley State University Lecture Presentation Chapter 14 Chemical Equilibrium.
Chemical Equilibrium Chapter – The Concept of Equilibrium Chemical Equilibrium = when the forward and reverse reactions proceed at equal rates.
Edward J. Neth University of Connecticut William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 12 Gaseous Chemical.
Chapter Fourteen Chemical Equilibrium.
Chapter 15 Chemical Equilibrium
Presentation transcript:

Chapter 16: Chemical Equilibrium- General Concepts WHAT IS EQUILIBRIUM?

The decomposition of N 2 O 4 (g) into NO 2 (g). The concentrations of N 2 O 4 and NO 2 change relatively quickly at first, but eventually stop changing with time when equilibrium is reached.

The equilibrium mixture is independent of whether we start on the “reactant side” or the “product side” The equilibrium between N 2 O 4 and NO 2.

The same equilibrium composition is reached from either the forward or reverse direction, provided the overall system composition is the same.

There is a simple relationship among the concentrations of the reactants and products for any chemical system at equilibrium Consider the equilibrium:

Four experiments to study the equilibrium among H 2, I 2, and HI gases. Different amounts of the reactants and products are placed in a 10.0 L reaction vessel at 440 o C where the gases establish equilibrium. When equilibrium is reached, different amounts of reactants and products remain.

This average value is called the reaction quotient, Q

The reaction can be evaluated at any concentrations At equilibrium (and 440 o C) for this reaction the reaction quotient has the value 49.5 (a unitless number) This relationship is called the equilibrium law for the system

The value 49.5 is called the equilibrium constant, K c, and characterizes the system For chemical equilibrium to exist, the reaction quotient Q must be equal to the equilibrium constant K c Consider the general chemical equation

The exponents in the mass action expression are the same as the stoichiometric coefficients At equilibrium The form is always “products over reactants” raised to the appropriate powers

Various operations can be performed on equilibrium expressions –Changing the direction of equilibrium – when the direction of an equilibrium is reversed, the new equilibrium constant is the reciprocal of the original

–Multiplying the coefficients by a factor – when the coefficients in an equation are multiplied by a factor, the equilibrium constant is raised to a power equal to that factor

–Adding chemical equilibria – when chemical equilibria are added, their equilibrium constants are multiplied

The gas law can be used to write the equilibrium constant in terms of partial pressures Equilibrium constants written in terms of partial pressures are given the symbol K p

The size of the equilibrium constant gives a measure of how the reaction proceeds General statements can be made about the equilibrium constant (either K c or K P )

The magnitude of K and the position of equilibrium. A large amount of product and very little reactant at equilibrium gives K>>1 (large K). When, approximately equal amounts of reactant and product are present at equilibrium. When K<<1, mostly reactant and very little product are present at equilibrium.

The two different forms of the equilibrium constants can be related

In a homogeneous reactions, all the reactants and products are in the same phase Heterogeneous reactions involve more than one phase For example the thermal decomposition of sodium bicarbonate (baking soda) Heterogeneous reactions can come to equilibrium just like homogeneous systems

If NaHCO 3 is placed in a sealed container, homogeneous equilibrium is established The equilibrium law involving pure liquids and pure solids can be simplified

–For a pure liquid or solid, the ratio of amount of substance to volume of substance is constant The concentration of a substance in a solid is constant. Doubling the number of moles doubles the volume, but the ratio of moles to volume remains the same.

The equilibrium law for a heterogeneous reaction is written without concentrations terms for pure solids or pure liquids. The equilibrium constants found in tables represent all the constants combined

According to Le Châtelier’s principle: If an outside influence upsets an equilibrium, the system undergoes a change in the direction that counteracts the disturbing influence and, if possible, returns the system to equilibrium We can consider some common “stresses” –Adding or removing a product or reactant The equilibrium shifts to remove reactants or products that have been added The equilibrium shifts to replace reactants or products that have been removed

–Changing the volume Reducing the volume of a gaseous reaction causes the reaction to decreases the number of molecules of gas, if it can Moderate pressure changes have a negligible effect on reactions involving only liquids or solids –Changing the temperature Increasing the temperature shifts a reaction in a direction that produces an endothermic (heat- absorbing) change Decreasing the temperature shifts a reaction in a direction that produces an exothermic (heat- releasing) change

–Catalysts have no effect on the position of equilibrium Catalysts change how fast a system achieves equilibrium, not the relative distribution of reactants and products –Adding an inert gas at constant volume If the added gas cannot react with any reactants or products it is inert towards the substances in the equilibrium No concentration changes occur, so Q still equals K and no shift in equilibrium occurs

Equilibrium calculations can be divided into two main categories: 1)Calculating equilibrium constants from known equilibrium concentrations or partial pressures 2)Calculating one or more equilibrium concentrations or partial pressures using the known value of K c or K P Consider the decomposition of N 2 O 4

Calculating the equilibrium constant this way is easy

More commonly, you will have a set of initial conditions and an equilibrium constant If a K P describes the system, equilibrium will usually be described in terms of partial pressures If a K c describes the system, equilibrium will usually be describe in terms of concentration (molarity, mol/L) The Initial, Change, Equilibrium or “ICE” table is a useful way to summarize the problem

–Example: Ethyl acetate, CH 3 CO 2 C 2 H 5, is produced from acetic acid and ethanol by the reaction At 25 o C, K c =4.10 for this reaction. Suppose mol of ethyl acetate and mol of water are placed in a 1.00 L reaction vessel. What are the concentrations of all species at equilibrium? ANALYSIS: Use an ICE table and the equilibrium constant to find the concentrations.

This can be solved by putting it in quadratic form:

Negative concentrations are not allowed, so A similar procedure can be used to calculate partial pressures using K P

Sometime simplifications can be made Example: Nitrogen and oxygen react to form nitrogen monoxide with K c =4.8x In air at 25 o C and 1 atm, the N 2 concentrations and O 2 are initially M and M. What are the equilibrium concentrations? ANALYSIS: The equilibrium constant is very small, very little of the reactants will be converted into products

Substituting: [N 2 ]=0.033-x=0.033 M [O 2 ]= x= M [NO]=2x=1.60x M