EQUILIBRIUM TIER 4 Apply LeChatelier’s principle to predict the qualitative effects of changes of temperature, pressure and concentration on the position.

Slides:



Advertisements
Similar presentations
Chemical Equilibrium Equilibrium.
Advertisements

Le Châtelier’s Principle
Equilibrium Unit 10 1.
Disturbing Equilibrium and Non-equilibrium conditions
7.5 Equilibrium Suppose that every time a car passes by a toll booth in one direction, another car passes through in the opposite direction. Then, the.
Chemical equilibrium is a state in which the forward and reverse reactions balance each other because they take place at equal rates. Rateforward reaction.
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Gaseous Chemical Equilibrium TEXT REFERENCE Masterton and Hurley Chapter 12.
CHAPTER 14 CHEMICAL EQUILIBRIUM
Chemical Equilibrium Chapter 13. Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the.
Chemical Kinetics and Equilibrium
A.P. Chemistry Chapter 13 Equilibrium Equilibrium is not static, but is a highly dynamic state. At the macro level everything appears to have stopped.
OBJECTIVES Describe how the amounts of reactants and products change in a chemical system at equilibrium.
Equilibrium The condition of a system in which competing influences are balanced. The condition of a system in which competing influences are balanced.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Figure 13.1 A Molecular Representation of the Reaction 2NO 2 (g)      g) Over.
Le Châtelier’s principle. The significance of Kc values Kc = Products Reactants Kc = Products Reactants If Kc is small (0.001 or lower), [products] must.
(7.3) Le Chatelier’s Principle - Regaining Equilibrium.
Chemical Equilibrium Chemistry 100. The concept  A condition of balance between opposing physical forces  A state in which the influences or processes.
Topic: EQUILIBRIUM Do Now:. VIDEO CLIP Equilibrium = Balance Not necessarily equal 1 man and 1 man equal but not balanced.
Chapter 18: Chemical Equilibrium
Bell Ringer.
Regent ’ s Warm-Up Which is an empirical formula? (1) P 2 O 5 (3) C 2 H 4 (2) P 4 O 6 (4) C 3 H 6.
Chemical Equilibrium Section 18-1 Pp Equilibrium is… Equilibrium is not static Opposing processes occur at the same time and at the same rate.
Qualitative Changes in Equilibrium Systems. Le Châtelier’s Principle Le Châtelier’s Principle – chemical systems at equilibrium shift to restore equilibrium.
Chemical Equilibrium Introduction to Chemical Equilibrium Equilibrium Constants and Expressions Calculations Involving Equilibrium Constants Using.
Equilibrium Notes: Factors Affecting Equilibrium Part 2.
Aim : How can equilibrium be shifted? Do Now: 1.Take out a calculator and reference tables. 2.What can change the equilibrium of a phase change?
1111 Chemistry 132 NT Pretty much all the honest truth-telling there is in the world is done by children. Oliver Wendell Holmes.
Factors that Affect Equilibrium Concentrations!. 2 Le Chatalier’s Principle The first person to study and comment on factors that change equilibrium concentrations.
Le Chatelier’s Principle and Equilibrium
1 Chemical Equilibrium You learned when we studied mechanisms that some rxns are reversible or equilibrium rxns The double arrow is used to show this.
General, Organic, and Biological Chemistry Copyright © 2010 Pearson Education, Inc. 1 Chapter 9 Chemical Equilibrium 9.5 Changing Equilibrium Conditions:
Chemical Equilibrium 4/24/2017.
Chemical Equilibrium Chemistry 100. The concept A condition of balance between opposing physical forces A state in which the influences or processes to.
Chapter 14 & 16 Chemical Equilibrium and reaction rates.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Reversible Reactions A chemical reaction in which the products can.
Chapter 13 Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there.
Le Chatelier’s Principle  A reaction at equilibrium, when “stressed,” will react to relieve the stress.  (If you mess with it, it will work to return.
Chapter 16 Chemical Equilibrium.
Energy transformations
Chemical Equilibrium. n In systems that are in equilibrium, reverse processes are happening at the same time and at the same rate. n Rate forward = Rate.
LeChâtelier’s Principle Regaining Equilibrium 6-2.
Preview Lesson Starter Objectives Predicting the Direction of Shift Reactions That Go to Completion Common-Ion Effect Chapter 18 Section 2 Shifting Equilibrium.
Prentice Hall © 2003Chapter 15 Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 9th Edition David P. White.
U1 S2 L2 Shifting the Balance. Factors that effect equilibrium p
Chemical Equilibrium Chapter A State of Dynamic Balance All chemical reactions are reversible. All chemical reactions are reversible. When both.
17-1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Equilibrium: The Extent of Chemical Reactions.
EQUILIBRIUM EXPRESSIONS The equilibrium expression for the general equation on the previous slide is written as follows: In this equation, the brackets,[
UNIT 10 COLLISION THEORY, RATE OF REACTION, LE CHATELIER PRINCIPLE.
Chemical Equilibrium Reactants Products Reactants Products As the time increases… [Reactants] decrease, so the rate of forward reaction decreases; [Products]
Pacific school of Engineering Sub: C.E.T-2 Topic: Chemical reaction Equilibrium Mayani Chintak Sudani Dhrutik Bhikadiya Hardik.
© Houghton Mifflin Harcourt Publishing Company Lesson Starter List two everyday processes that can easily be reversed and two that cannot. The freezing.
CHEMICAL EQUILIBRIUM. INTRODUCTION 1. In the reaction: I 2 (g) + H 2 (g)  2 HI(g) at 150 o C, the original color of the mixture is: at 150 o C, the original.
Chapter 15 Chemical Equilibrium
Chapter 18 Lesson Starter
Chem 30: Equilibrium Le Chatelier.
Chapter 17 “Reaction Rates and Equilibrium” Part 2: Equilibrium
Gaseous Chemical Equilibrium Chapter 12
Le Chatelier’s Principle
Basic Equilibrium Principles 18.1
Chemical Equilibrium.
LECHATELIER’S PRINCIPLE
The student will learn:
Le Chatelier's Principle
Equilibrium.
Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K c ; Calculating K c using equilibrium concentrations; Calculating equilibrium.
Heterogeneous Equilibria
Effects of Volume and Pressure Changes
18-2 Shifting Equilibrium
Le Chatelier’s Principle and Equilibrium
CHEMICAL EQUILIBRIUM:
Presentation transcript:

EQUILIBRIUM TIER 4 Apply LeChatelier’s principle to predict the qualitative effects of changes of temperature, pressure and concentration on the position of equilibrium and on the value of the equilibrium constant State and explain the effect of a catalyst on an equilibrium reaction

Predicting the Direction of Shift Changes in pressure, concentration, or temperature can alter the equilibrium position and thereby change the relative amounts of reactants and products. Le Châtelier’s principle states that if a system at equilibrium is subjected to a stress, the equilibrium is shifted in the direction that tends to relieve the stress. This principle is true for all dynamic equilibria, chemical as well as physical. Changes in pressure, concentration, and temperature illustrate Le Châtelier’s principle.

Predicting the Direction of Shift, continued Changes in Pressure A change in pressure affects only equilibrium systems in which gases are involved. For changes in pressure to affect the system, the total number of moles of gas on the left side of the equation must be different from the total number of moles of gas on the right side of the equation. An increase in pressure is an applied stress. It causes an increase in the concentrations of all species. The system can reduce the total pressure by reducing the number of molecules.

Predicting the Direction of Shift, continued Changes in Pressure, continued the Haber process for the synthesis of ammonia 4 molecules of gas 2 molecules of gas When pressure is applied, the equilibrium will shift to the right, and produce more NH 3. By shifting to the right, the system can reduce the total number of molecules. This leads to a decrease in pressure.

Predicting the Direction of Shift, continued Changes in Pressure, continued Even though changes in pressure may shift the equilibrium position, they do not affect the value of the equilibrium constant. The introduction of an inert gas, such as helium, into the reaction vessel increases the total pressure in the vessel. But it does not change the partial pressures of the reaction gases present. Increasing pressure by adding a gas that is not a reactant or a product cannot affect the equilibrium position of the reaction system.

Predicting the Direction of Shift, continued Changes in Concentration An increase in the concentration of a reactant is a stress on the equilibrium system. An increase in the concentration of A creates a stress. To relieve the stress, some of the added A reacts with B to form products C and D. The equilibrium is reestablished with a higher concentration of A than before the addition and a lower concentration of B.

Predicting the Direction of Shift, continued Changes in Concentration, continued Changes in concentration have no effect on the value of the equilibrium constant. Such changes have an equal effect on the numerator and the denominator of the chemical equilibrium expression. The concentrations of pure solids and liquids do not change, and are not written in the equilibrium expression. When a solvent, such as water, in a system involving acids and bases, is in an equilibrium equation, it is not included in the equilibrium expression.

Predicting the Direction of Shift, continued Changes in Concentration, continued High pressure favors the reverse reaction. Low pressure favors the formation of CO 2. Because both CaO and CaCO 3 are solids, changing their amounts will not change the equilibrium concentration of CO 2.

Predicting the Direction of Shift, continued Changes in Temperature Reversible reactions are exothermic in one direction and endothermic in the other. The effect of changing the temperature of an equilibrium mixture depends on which of the opposing reactions is endothermic and which is exothermic. The addition of energy in the form of heat shifts the equilibrium so that energy is absorbed. This favors the endothermic reaction. The removal of energy favors the exothermic reaction.

EXOTHERMIC REACTIONS: A + B  C + D +HEAT Increasing the temperature is like adding something to the product side of the equation, so the equilibrium position will shift back to the reactant side to relief the stress Therefore decreasing the temperature is like removing something on the product side of the equation, so the equilibrium position will shift toward the product side to relief the stress

ENDOTHERMIC REACTION: A + B + HEAT  C + D Increasing the temperature is like adding something to the reactant side of the equation, so the equilibrium position will shift toward the product side to relief the stress Therefore decreasing the temperature is like removing something on the reactant side of the equation, so the equilibrium position will shift toward the reactant side to relief the stress

Predicting the Direction of Shift, continued Changes in Temperature, continued A rise in temperature increases the rate of any reaction. In an equilibrium system, the rates of the opposing reactions are raised unequally. The value of the equilibrium constant for a given system is affected by the temperature.

Predicting the Direction of Shift, continued Changes in Temperature, continued The synthesis of ammonia by the Haber process is exothermic. A high temperature favors the decomposition of ammonia, the endothermic reaction. At low temperatures, the forward reaction is too slow to be commercially useful. The temperature used represents a compromise between kinetic and equilibrium requirements.

Predicting the Direction of Shift, continued Changes in Temperature, continued Catalysts have no effect on relative equilibrium amounts. They only affect the rates at which equilibrium is reached. Catalysts increase the rates of forward and reverse reactions in a system by equal factors. Therefore, they do not affect K.

PROBLEM: EXAMINE THE FOLLOWING REACTION AND APPLY Le CHATELIER’S PRINCIPLE TO PREDICT WHICH DIRECTION IF ANY THE EQUILIBRIUM POSITION WILL SHIFT IF THE DESIGNATED STRESS IS APPLIED 2CO(g) + O 2 (g)  2CO 2 (g) + 167kJ (A.) Adding more carbon dioxide (B)Increasing the pressure on the closed system (C)Adding an inert gas such as helium (D)Increasing the temperature (E)Adding more oxygen gas (F)Adding a catalyst

ANSWER: A SHIFTS BACK TOWARD THE REACTANTS OR SHIFTS LEFT B.SHIFTS TOWARD THE PRODUCTS SINCE (SHIFTS RIGHT) THERE ARE LESS GAS MOLECULES ON THE PRODUCT SIDE C.DOES NOT AFFECT EQUILIBRIUM D.This does not effect the equilibrium E.This has not affect on equilibrium F.SHIFTS BACK TOWARD THE REACTANTS OR SHIFTS LEFT G.SHIFTS TOWARD THE PRODUCTS H.HAS NO AFFECT ON EQUILIBRIUM

The end